Cezary Dziekoński, Eng.

Department of Theory of Continuous Media and Nanostructures (ZTOCiN)
Division of Polymer Physics (PFP)
position: lab technician
telephone: (+48) 22 826 12 81 ext.: 107
room: 237
e-mail: cdziekon

Recent publications
1.Dziekoński C., Dera W., Jarząbek D.M., Method for lateral force calibration in atomic force microscope using MEMS microforce sensor, ULTRAMICROSCOPY, ISSN: 0304-3991, DOI: 10.1016/j.ultramic.2017.06.012, Vol.182, pp.1-9, 2017
Dziekoński C., Dera W., Jarząbek D.M., Method for lateral force calibration in atomic force microscope using MEMS microforce sensor, ULTRAMICROSCOPY, ISSN: 0304-3991, DOI: 10.1016/j.ultramic.2017.06.012, Vol.182, pp.1-9, 2017

Abstract:
In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes.

Keywords:
A precise and direct method for lateral force calibration, Inaccuracy equal to approximately 2%, Wedge method is proven to give inaccurate results

2.Jarząbek D.M., Milczarek M., Wojciechowski T., Dziekoński C., Chmielewski M., The effect of metal coatings on the interfacial bonding strength of ceramics to copper in sintered Cu-SiC composites, CERAMICS INTERNATIONAL, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2017.01.056, pp.1-9, 2017
Jarząbek D.M., Milczarek M., Wojciechowski T., Dziekoński C., Chmielewski M., The effect of metal coatings on the interfacial bonding strength of ceramics to copper in sintered Cu-SiC composites, CERAMICS INTERNATIONAL, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2017.01.056, pp.1-9, 2017

Abstract:
Cu-SiC composites are very promising materials which have high thermal and electrical conductivity and may find many applications. Unfortunately, the main disadvantage of these materials is the dissolution of silicon in copper at elevated temperature, which significantly reduces their properties. In order to overcome this problem particles can be coated with a protective material before sintering. In this paper– the influence of three different metallic coatings on bonding strength were investigated. SiC particles were coated with tungsten, chromium or titanium. As reference a material with uncoated particles was prepared. The experiments were carried out with the use of microtensile tester. The highest increase in strength was observed in the case of chromium coating. On the other hand, the titanium coating, which was of very poor quality, decrease the bonding strength in comparison with uncoated particles. Furthermore, scanning electron and optical microscopes were used to determine the mechanism of debonding.

Keywords:
Interfacial bonding strength, Metal matrix composites, Tensile strength, Silicon carbide particles


Conference abstracts
1.Frąś L.J., Jarząbek D., Dziekoński C., Pęcherski R.B., Viscoplastic deformation of magnethoreological solids, SolMech 2016, 40th Solid Mechanics Conference, 2016-08-29/09-02, Warszawa (PL), No.P244, pp.1-2, 2016
Frąś L.J., Jarząbek D., Dziekoński C., Pęcherski R.B., Viscoplastic deformation of magnethoreological solids, SolMech 2016, 40th Solid Mechanics Conference, 2016-08-29/09-02, Warszawa (PL), No.P244, pp.1-2, 2016

Abstract:
The microsized (~10µm) ferroelements build the structure of magenthoreological (MR) fluid. This two phase material in neutral state behaves as a fluid but in magnetic field becomes a solid and has properties of elasto-viscoplastic material. This is due to the skeleton made by ferrolements connected into braids. The aim of the paper is to identify the physical mechanisms of deformation of such a structure with use of own set up for in situ microscopic observations.

Keywords:
magnethoreological solids, viscoplasticity, ferroelements, compression test, shear banding


Patents
Numer/data zgłoszenia patentowego
Ogłoszenie o zgłoszeniu patentowym
Twórca / twórcy
Tytuł
Kraj i Nazwa uprawnionego z patentu
Numer patentu
Ogłoszenie o udzieleniu patentu
pdf
419571
2016-11-23
-
-
Jarząbek D., Dera W., Dziekoński C.
Urządzenie do pomiaru lepkości cienkich warstw materiałów lepkosprężystych
PL, Instytut Podstawowych Problemów Techniki PAN
-
-
-