Krzysztof Sielewicz, M.Sc., Eng.


Conference papers
1.Lewandowski M., Walczak M., Witek B., Kulesza P., Sielewicz K., Modular & Scalable Ultrasound Platform with GPU Processing, IUS 2012, IEEE International Ultrasonics Symposium, 2012-10-07/10-10, Dresden (DE), DOI: 10.1109/ULTSYM.2012.0518, pp.2071-2074, 2012
Abstract:

The objective of our project is to develop a complete ultrasound platform with real-time GPU processing. The platform is designed to be modular and scalable both in number of ultrasound channels (64-256), as well as in communication bandwidth and processing power. By standardizing on the PCIe switch fabric, we are planning to integrate all the ultrasound modules and processing resources (GPU) in a single rack enclosure. Using PCIe direct peer-to-peer communication for transferring the data from the ultrasound acquisition modules to the GPUs, we maximize the system bandwidth and minimize CPU usage. The first developed module of our platform is RX64 - a 64-channel ultrasound acquisition PCIe card. The RX64 contains a high-end FPGA Altera Stratix IV 70 GX interfaced to: two 32-channels mixed-signal front-end ultrasound modules and two 64-bit 8GB DDR3 SO-DIMM memories for data buffering. We also develop GPU kernels for SAFT based ultrasound imaging, as well as GPU Framework for building complete signal processing pipeline.

Keywords:

ultrasonic imaging, synthetic aperture, GPU, FPGA

Affiliations:
Lewandowski M.-IPPT PAN
Walczak M.-IPPT PAN
Witek B.-IPPT PAN
Kulesza P.-IPPT PAN
Sielewicz K.-IPPT PAN
2.Lewandowski M., Sielewicz K., Walczak M., A Low-cost 32-channel Module with High-speed Digital Interfaces for Portable Ultrasound Systems, IUS 2012, IEEE International Ultrasonics Symposium, 2012-10-07/10-10, Dresden (DE), DOI: 10.1109/ULTSYM.2012.0159, pp.639-642, 2012
Abstract:

There is a continuous trend towards small and portable ultrasound systems with multichannel processing. The objective of the work was to develop a modular acquisition and processing platform based on the following architecture principles: limited hardware processing, external high-speed data communication and software based on SAFT processing using embedded graphics processing unit (GPU). The acquisition module connected via PCIe or USB 3.0 interface can stream either raw RF data or demodulated ones. A low-power embedded PC with embedded GPU will implement ultrasound signal processing, as well as control and visualization functions. The performed feasibility study showed that AMD APU G-Series embedded x86 CPU+GPU is capable of real-time SAFT image reconstruction at limited resolution.

Keywords:

ultrasonic imaging, synthetic aperture, medical electronics, GPU, FPGA

Affiliations:
Lewandowski M.-IPPT PAN
Sielewicz K.-IPPT PAN
Walczak M.-IPPT PAN