Maciej Michajłow, M.Sc.

Department of Intelligent Technologies (ZTI)
Division of Control and System Dynamics (PSiDU)
position: doctoral student
telephone: (+48) 22 826 12 81 ext.: 319
room: 436
e-mail: mmich

Recent publications
1.Michajłow M., Jankowski Ł., Szolc T., Konowrocki R., Semi-active reduction of vibrations in the mechanical system driven by an electric motor, OPTIMAL CONTROL APPLICATIONS & METHODS, ISSN: 0143-2087, DOI: 10.1002/oca.2297, pp.1-12, 2017
Abstract:

In this paper, a semi-active damping approach is used for reduction of vibrations in a laboratory drivetrain system. The considered drivetrain system is powered by an electric, asynchronous motor at the one side and loaded with a harmonically varying torque on the other side. Here, an influence of electromechanical interaction, i.e., an electromechanical coupling, between the electric motor and the mechanical system has been taken into consideration. The harmonic load signal induces torsional vibrations in the system, which in the steady-state phase of motion become periodic. The aim of the work is to determine the optimal control function for a semi-active damping element, leading to vibration reduction and considering only the steady-state phase of system motion. The optimal control is derived by using a semi-analytical approach based on the optimal control theory aided with supplementary numerical computations. The proposed methodology is fully general, and it can be directly applied to any type of a periodically oscillating system.

Keywords:

electric motor, electromechanical coupling, optimal control, periodic torsional vibrations, semi-active damping

Affiliations:
Michajłow M.-IPPT PAN
Jankowski Ł.-IPPT PAN
Szolc T.-IPPT PAN
Konowrocki R.-IPPT PAN
2.Michajłow M., Konowrocki R., Szolc T., A semi-active control of lateral vibrations of the overhung rotor using dampers with the magneto-rheological fluid, VIBRATIONS IN PHYSICAL SYSTEMS, ISSN: 0860-6897, Vol.27, pp.274-280, 2016
Abstract:

In the paper there is proposed an algorithm of an efficient semi-active control of steady-state periodic lateral vibrations of the overhung rotor-shaft system. This algorithm has been developed using fundamentals of the Optimal Control Theory. In the considered system the control is realized by means of the linear dampers withthe magneto-rheological fluid built in the bearing housing. The computational example demonstrates possibilities of the applied approach resulting in an additional reduction of out-of-resonance and near resonance harmonic oscillation amplitudes in comparison withan analogous passive control.

Keywords:

overhung rotor-shaft, lateral vibrations, semi-active control, Optimal Control Theory

Affiliations:
Michajłow M.-IPPT PAN
Konowrocki R.-IPPT PAN
Szolc T.-IPPT PAN
3.Michajłow M., Szolc T., Jankowski Ł., Konowrocki R., Semi-Active Reduction of Vibrations of Periodically Oscillating System, Solid State Phenomena, ISSN: 1662-9779, DOI: 10.4028/www.scientific.net/SSP.248.111, Vol.248, pp.111-118, 2016
Abstract:

Periodical vibrations are common phenomenon affecting a wide range of mechanical systems. Most frequently it affects machines designed to work in a steady-state conditions like: turbine, pump, rail vehicle, etc. In those kinds of machines it is always possible to decompose the system motion to basic average-speed constant component and oscillatory component. Usually the second term is treated as undesirable and various techniques are applied in order to minimize it as far as it is possible. These techniques refers to both the hardware selection – meaning the type of damping system (active, semi-active, passive) and the control method selection – meaning the damping system control method. Concerning the control methods, there are many algorithms available in literature devoted to transient systems. One of typical application is to use them in systems experiencing sudden, external force excitation. After destabilization of the system, caused by excitation, the role of the control algorithm is to restore the system stable position and additionally to reach the extreme of some additional criterion. Typical criterions are minimization of the time, of restoring the stable position, minimizing the consumed control energy, etc. On the other hand, considering the steady-state systems, especially based on semi-active damping elements, there are not so many control methods available.This paper focuses on developing the proper methodology for deriving the optimal control strategy of semi-active damping element, to be used in periodically vibrating mechanical system. The control strategy is developed on the basis of the Optimal Control Theory. Numerical computations are involved in order to solve the optimal control problem for the considered test system. Problem solution reveals the periodical nature of optimal control function.

Keywords:

Optimal Control Theory, Periodical Vibrations, Vibration Reduction

Affiliations:
Michajłow M.-IPPT PAN
Szolc T.-IPPT PAN
Jankowski Ł.-IPPT PAN
Konowrocki R.-IPPT PAN
4.Szolc T., Konowrocki R., Michajłow M., Pręgowska A., An investigation of the dynamic electromechanical coupling effects in machine drive systems driven by asynchronous motors, MECHANICAL SYSTEMS AND SIGNAL PROCESSING, ISSN: 0888-3270, DOI: 10.1016/j.ymssp.2014.04.004, Vol.49, pp.118-134, 2014
Abstract:

In the paper dynamic electromechanical interaction between the rotating machine drive system and the electric driving motor is considered. The investigations are performed by means of the circuit model of the asynchronous motor as well as using an advanced structural hybrid model of the drive system. Using the analytical solutions applied for the electrical and the mechanical systems the electromagnetic stiffness and coefficient of damping, both generated by the electric motor rotationally interacting with the mechanical system of the given dynamic properties, were determined. By means of experimentally validated computational responses obtained for torsional harmonic excitation induced by the driven machine working tool, a modification of dynamic properties of the mechanical system by the electromagnetic flux between the stator and the rotor has been studied.

Keywords:

Machine drive system, Asynchronous motor, Electromechanical coupling

Affiliations:
Szolc T.-IPPT PAN
Konowrocki R.-IPPT PAN
Michajłow M.-IPPT PAN
Pręgowska A.-IPPT PAN
5.Michajłow M., Konowrocki R., Szolc T., Vibration control of the rotating machine geared drive system using linear actuators with the magneto-rheological fluid, VIBRATIONS IN PHYSICAL SYSTEMS, ISSN: 0860-6897, Vol.25, pp.279-284, 2012
Abstract:

In this paper there is proposed a semi-active control technique based on the linear actuators with the magneto-rheological fluid (MRF) connecting the drive system planetary gear housing with the immovable rigid support. Here, control damping torques are generated by means of the magneto-rheological fluid of adjustable viscosity. Such actuators can effectively suppress amplitudes of severe transient and steady-state rotational fluctuations of the gear housing position and in this way they are able to minimize dangerous oscillations of dynamic torques transmitted by successive shaft segments in the entire drive system. The general purpose of the considerations is to control torsional vibrations of the real power-station coal-pulverizer geared drive system driven by means of the asynchronous motor. The investigations have been carried out using the experimental test rig based on the real object, where the measurement results were compared with analogous theoretical ones obtained by the use of computer simulations.

Keywords:

torsional vibrations, magneto-rheological dampers, semi-active control

Affiliations:
Michajłow M.-IPPT PAN
Konowrocki R.-IPPT PAN
Szolc T.-IPPT PAN
6.Gambin B., Kruglenko E., Kujawska T., Michajłow M., Modeling of tissues in vivo heating induced by exposure to therapeutic ultrasound, ACTA PHYSICA POLONICA A, ISSN: 0587-4246, Vol.119, pp.950-956, 2011
Abstract:

The aim of this work is mathematical modeling and numerical calculation in space and time of temperature fields induced by low power focused ultrasound beams in soft tissue in vivo after few minutes exposure time. These numerical predictions are indispensable for planning of various ultrasound therapeutic applications. Both, the acoustic pressure distribution and power density of heat sources induced in tissue, were calculated using the numerical solution to the second order nonlinear differential wave equation describing propagation of the high intensity acoustic wave in three-layer structure of nonlinear attenuating media. The problem of the heat transfer in living tissues is modelled by the Pennes equation, which accounts for the effects of heat diffusion, blood perfusion losses and metabolism rate. Boundary conditions and geometry are chosen according to the anatomical dimensions of a rat liver. The obtained results are compared with those calculated previously and verified experimentally for temperature elevations induced by ultrasound in liver samples in vitro. The analysis of the results emphasizes the value of the blood perfusion and the values of heat conductivity on the temperature growth rate. The numerical calculations of temperature fields were performed using the ABAQUS FEM software package. The thermal and acoustic properties of the liver and water being the input parameters to the numerical model were taken from the published data in cited references. The range of thermal conductivity coefficient of living tissue is obtained from the model of two-phase composite medium with given microstructure. The first component is a “solid” tissue and the second one corresponds to blood vessels area. The circular focused ultrasonic transducer with a diameter of 15 mm, focal length of 25 mm and resonance frequency of 2 MHz has been used to generate the pulsed ultrasonic beam in a very introductory experiment in vivo, which has been performed. Numerical prediction confirms qualitatively its results.

Keywords:

focused ultrasound, soft tissues, local thermal fields, numerical modelling

Affiliations:
Gambin B.-IPPT PAN
Kruglenko E.-IPPT PAN
Kujawska T.-IPPT PAN
Michajłow M.-IPPT PAN

Conference papers
1.Szolc T., Konowrocki R., Michajłow M., On Research and development-aspects of the highly-energetic concept for the copper ore comminution, ICNOP 2015, XI Międzynarodowa Konferencja Przeróbki Rud Metali Nieżelaznych, 2015-05-27/05-29, Trzebieszowice (PL), pp.47-59, 2015
Abstract:

In the paper there will be presented fundamental advantages and problems connected with an application possibility of the highly-energetic, impact-type technique of the copper ore comminution in a comparison with the analogous methods used till present by the ore pro-cessing plants belonging to the company KGI-IM — Polska Miedt S.A. In this aspect the main technical and exploitation requirements expected from the high-speed beater mills for impact-type copper ore comminution in a dry mode shall be considered. In particular, there will be discussed dynamic phenomena associated with an operation of such devices as well as modern computational methods enabling us an expectation of their positive and negative consequences for an operational effectiveness, durability and robustness of the most respon-sible working elements. The mechanical vibrations can be regarded here as one of the most detrimental phenomenon caused by the highly dynamic interaction between the beater-wheel and the comminuted ore. First of all, these are bending and torsional vibrations of the beater.

Keywords:

copper ore highly-energetic comminution, beater mill, dynamic analysis

Affiliations:
Szolc T.-IPPT PAN
Konowrocki R.-IPPT PAN
Michajłow M.-IPPT PAN
2.Szolc T., Konowrocki R., Michajłow M., On electromechanical dynamic coupling effects in the semi-actively controlled rotating machine drive system driven by the induction motor, SIRM 2013, 10th International Conference on Vibrations in Rotating Machines, 2013-02-25/02-27, Berlin (DE), No.ID-258, pp.1-10, 2013
Abstract:

In the paper there is studied dynamic electromechanical interaction between the geared drive system of a rotating machine and the driving induction (asynchronous) motor. The investigations are performed by the use of experimental measurements carried out on the real object as well as by means of a theoretical approach using a circuit model of the electric motor in the form of Park’s equations and the advanced drive system hybrid, i.e. discrete-continuous, mechanical model of an identical structure and parameters as the classical preliminarily applied one-dimensional finite element model. The experimental and theoretical considerations are focused on the steady-state operating conditions, where severe torsional vibrations are excited by variable components of the driven machine retarding torque as well as by the electromagnetic torque generated by the induction motor. The qualitative analysis is performed by means of the harmonic balance method applied for Park’s equations and using the modal approach for the experimentally identified mechanical model. In order to minimize torsional vibration amplitudes induced by the electromechanical interaction in the considered system, the semi-active control technique based on actuators with the magneto-rheological fluid has been tested.

Keywords:

electromechanical dynamic coupling, electric motor, torsional vibrations, experimental investigation

Affiliations:
Szolc T.-IPPT PAN
Konowrocki R.-IPPT PAN
Michajłow M.-IPPT PAN
3.Szolc T., Jankowski Ł., Pochanke A., Michajłow M., Vibration control of the coal pulverizer geared drive system using linear actuators with the magneto-rheological fluid, SIRM 2011, 9th International Conference on Vibrations in Rotating Machines, 2011-02-21/02-23, Darmstadt (GE), pp.1-10, 2011
Abstract:

Torsional vibrations are in general rather troublesome to control from the viewpoint of proper control torque generation as well as because of difficulties of imposing the control torques on quickly rotating parts of the drive- or rotor-shaft systems. In this paper there is proposed an active control technique based on the linear actuators with the magneto-rheological fluid (MRF) connecting the drive system planetary gear housing with the immovable rigid support. Here, by means of the magneto-rheological fluid of adjustable viscosity control damping torques are generated. Such actuators can effectively suppress amplitudes of severe transient and steady-state rotational fluctuations of the gear housing position and in this way they are able to minimize dangerous oscillations of dynamic torques transmitted by successive shaft segments in the entire drive system. The general purpose of the considerations is to control torsional vibrations of the power-station coal-pulverizer drive system driven by means of the asynchronous motor and the single stage planetary gear. In the computational examples drive system transient torsional vibrations induced by the electromagnetic motor torques during start-ups as well as steady-state vibrations excited by the variable dynamic retarding torques generated by the coal pulverizer during nominal operation have been significantly attenuated.

Keywords:

Torsional vibrations, rotational fluctuation, magneto-rheological fluid

Affiliations:
Szolc T.-IPPT PAN
Jankowski Ł.-IPPT PAN
Pochanke A.-other affiliation
Michajłow M.-IPPT PAN