Wojciech Święszkowski, Ph.D., Dr. Habil., Eng.

position: project manager

Supervision of doctoral theses
1.2016-12-09Witecka Agnieszka  
(PW)
Improvement of biocompatibility of magnesium alloys AZ91 and ZM21 by surface modification 

Recent publications
1.Witecka A., Yamamoto A., Święszkowski W., Influence of SaOS-2 cells on corrosion behavior of cast Mg-2.0Zn0.98Mn magnesium alloy, COLLOIDS AND SURFACES B-BIOINTERFACES, ISSN: 0927-7765, DOI: 10.1016/j.colsurfb.2016.10.041, Vol.150, pp.288-296, 2017
Abstract:

In this research, the effect of the presence of living cells (SaOS-2) on in vitro degradation of Mg-2.0Zn-0.98Mn (ZM21) magnesium alloy was examined by two methods simple immersion/cell culture tests and electrochemical measurements (electrochemical impedance spectroscopy and potentiodynamic polarization) under cell culture conditions. In immersion/cell culture tests, when SaOS-2 cells were cultured on ZM21 samples, pH of cell culture medium decreased, therefore weight loss and Mg2+ ion release from the samples increased. Electrochemical measurements revealed the presence of living cells increased corrosion rate (Icorr) and decreased polarization resistance (Rp) after 48 h of incubation. This acceleration of ZM21 corrosion can mainly be attributed to the decrease of medium pH due to cellular metabolic activities.

Keywords:

Biodegradable metals, Biomaterials, Electrochemical impedance spectroscopy, Immersion, Cell culture condition

Affiliations:
Witecka A.-other affiliation
Yamamoto A.-National Institute for Materials Science (JP)
Święszkowski W.-other affiliation
2.Witecka A., Yamamoto A., Idaszek J., Chlanda A., Święszkowski W., Influence of biodegradable polymer coatings on corrosion, cytocompatibility and cell functionality of Mg-2.0Zn-0.98Mn magnesium alloy, COLLOIDS AND SURFACES B-BIOINTERFACES, ISSN: 0927-7765, DOI: 10.1016/j.colsurfb.2016.04.021, Vol.144, pp.284-292, 2016
Abstract:

Four kinds of biodegradable polymers were employed to prepare bioresorbable coatings on Mg-2.0Zn-0.98Mn (ZM21) alloy to understand the relationship between polymer characteristics, protective effects on substrate corrosion, cytocompatibility and cell functionality. Poly-l-lactide (PLLA), poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) or poly(lactic-co-glycolic) acid (PLGA) was spin-coated on ZM21, obtaining a smooth, non-porous coating less than 0.5 μm in thickness. Polymer coating characterization, a degradation study, and biocompatibility evaluations were performed. After 4 w of immersion into cell culture medium, degradation of PLGA and PLLA coatings were confirmed by ATR-FTIR observation. The coatings of PLLA, PHB and PHBV, which have lower water permeability and slower degradation than PLGA, provide better suppression of initial ZM21 degradation and faster promotion of human osteosarcoma cell growth and differentiation.

Keywords:

Biodegradable metal, Magnesium alloy, Biodegradable polymer, SaOS-2 differentiation, Calcification

Affiliations:
Witecka A.-other affiliation
Yamamoto A.-National Institute for Materials Science (JP)
Idaszek J.-other affiliation
Chlanda A.-Warsaw University of Technology (PL)
Święszkowski W.-other affiliation
3.Urbanek O., Pierini F., Choińska E., Sajkiewicz P., Bil M., Święszkowski W., Effect of hydroxyapatite nanoparticles addition on structure properties of poly(L-lactide-co-glycolide) after gamma sterilization, Polymer Composites, ISSN: 0272-8397, DOI: 10.1002/pc.24028, Vol.1, pp.1-9, 2016
Abstract:

Physical and chemical factors resulting from the sterilization methods may affect the structure and properties of the materials which undergo this procedure. Poly(l-lactide-co-glicolide) (PLGA) is commonly used for medical applications, but, due to its inadequate mechanical properties, it is not recommended for load-bearing applications. One of the methods for improving PLGA mechanical properties is addition of hydroxyapatite nanoparticles (nHAp). The aim of this study was to evaluate the effect of nanoparticles addition on PLGA structure and properties after gamma radiation. According to our results, reduction of the molecular mass caused by gamma radiation was lower for PLGA with nHAp addition. Differential scanning calorimetry (DSC) analysis indicates an increase of crystallinity caused both by nHAp and gamma radiation. The first phenomenon can be explained by heteronucleation, while the second one is most probably related to higher molecular mobility of degrading polymer. Moreover, addition of nanoparticles increases thermal stability and affects the Young's modulus changes after gamma radiation.

Affiliations:
Urbanek O.-IPPT PAN
Pierini F.-IPPT PAN
Choińska E.-Warsaw University of Technology (PL)
Sajkiewicz P.-IPPT PAN
Bil M.-Warsaw University of Technology (PL)
Święszkowski W.-other affiliation
4.Witecka A., Bogucka A., Yamamoto A., Máthis K., Krajňák T., Jaroszewicz J., Święszkowski W., In vitro degradation of ZM21 magnesium alloy in simulated body fluids, Materials Science and Engineering C-Materials for Biological Applications, ISSN: 0928-4931, DOI: 10.1016/j.msec.2016.04.019, Vol.65, pp.59-69, 2016
Abstract:

In vitro degradation behavior of squeeze cast (CAST) and equal channel angular pressed (ECAP) ZM21 magnesium alloy (2.0 wt% Zn-0.98 wt% Mn) was studied using immersion tests up to 4 w in three different biological environments. Hanks' Balanced Salt Solution (Hanks), Earle's Balanced Salt Solution (Earle) and Eagle minimum essential medium supplemented with 10% (v/v) fetal bovine serum (E-MEM + 10% FBS) were used to investigate the effect of carbonate buffer system, organic compounds and material processing on the degradation behavior of the ZM21 alloy samples. Corrosion rate of the samples was evaluated by their Mg2 + ion release, weight loss and volume loss. In the first 24 h, the corrosion rate sequence of the CAST samples was as following: Hanks > E-MEM + 10% FBS > Earle. However, in longer immersion periods, the corrosion rate sequence was Earle > E-MEM + 10% FBS ≥ Hanks. Strong buffering effect provided by carbonate buffer system helped to maintain the pH avoiding drastic increase of the corrosion rate of ZM21 in the initial stage of immersion. Organic compounds also contributed to maintain the pH of the fluid. Moreover, they adsorbed on the sample surface and formed an additional barrier on the insoluble salt layer, which was effective to retard the corrosion of CAST samples. In case of ECAP, however, this effect was overcome by the occurrence of strong localized corrosion due to the lower pH of the medium. Corrosion of ECAP samples was much greater than that of CAST, especially in Hanks, due to higher sensitivity of ECAP to localized corrosion and the presence of Cl−.

The present work demonstrates the importance of using an appropriate solution for a reliable estimation of the degradation rate of Mg-base degradable implants in biological environments, and concludes that the most appropriate solution for this purpose is E-MEM + 10% FBS, which has the closest chemical composition to human blood plasma.

Keywords:

ZM21 magnesium alloy, ECAP, Simulated body fluids, In vitro degradationBicomponent nanofibers, Biodegradation, Biopolymer

Affiliations:
Witecka A.-other affiliation
Bogucka A.-Warsaw University of Technology (PL)
Yamamoto A.-National Institute for Materials Science (JP)
Máthis K.-Charles University in Prague (CZ)
Krajňák T.-Charles University in Prague (CZ)
Jaroszewicz J.-other affiliation
Święszkowski W.-other affiliation
5.Enayati M.S., Behzad T., Sajkiewicz P., Bagheri R., Ghasemi‑Mobarakeh L., Kuśnieruk S., Rogowska-Tylman J., Pahlevanneshan Z., Choińska E., Święszkowski W., Fabrication and characterization of electrospun bionanocomposites of poly (vinyl alcohol)/ nanohydroxyapatite/cellulose nanofibers, International Journal of Polymeric Materials and Polymeric Biomaterials, ISSN: 0091-4037, DOI: 10.1080/00914037.2016.1157798, Vol.65, No.13, pp.660-674, 2016
Abstract:

The aim of the present study was preparation, optimization, and systematic characterization of electrospun bionanocomposite fibers based on polyvinyl alcohol (PVA) as matrix and nanohydroxy apatite (nHAp) and cellulose nanofibers (CNF) as nanoreinforcements. The presence of nHAp and nHAp-CNF affected the morphology of electrospun mats and reduced fiber diameter, particularly at a higher content of nanofillers. The obtained results of FTIR, DSC, and WAXS proved the crystallinity reduction of electrospun nancomposites. Both nHAp and nHAp-CNF addition led to a significant increase of Young modulus with the highest stiffness for nanocomposite fibers at 10 wt% of nHAp and 3 wt% of CNF.

Keywords:

Bionanocomposite, cellulose nanofibers, electrospinning, nanohydroxy apatite

Affiliations:
Enayati M.S.-Isfahan University of Technology (IR)
Behzad T.-Isfahan University of Technology (IR)
Sajkiewicz P.-IPPT PAN
Bagheri R.-Isfahan University of Technology (IR)
Ghasemi‑Mobarakeh L.-Isfahan University of Technology (IR)
Kuśnieruk S.-other affiliation
Rogowska-Tylman J.-other affiliation
Pahlevanneshan Z.-Payame Noor University (IR)
Choińska E.-Warsaw University of Technology (PL)
Święszkowski W.-other affiliation
6.Witecka A., Yamamoto A., Święszkowski W., Influence of SaOS-2 cells on corrosion behaviour of cast ZM21 magnesium alloy, European Cells and Materials, ISSN: 1473-2262, Vol.28, No.Suppl. 3, pp.71, 2014
7.Figurska M., Święszkowski W., Telega J.J., Influence of wear debris on behaviour and biomechanical properties of bone-implant interface, Russian Journal of Biomechanics, Vol.9, No.2, pp.20-32, 2005

List of chapters in recent monographs
1.
134
Święszkowski W., Figurska M., Berse H.E.N., Kurzydłowski K.J., Biomaterials in the orthopaedic practice, ABIOMED Lecture Notes 5, rozdział: In vivo degradation and wear of biomaterials in total joint replacements, IPPT PAN, ABIOMED (Warszawa), Lekszycki T., Małdyk P. (Eds.), 5, pp.97-115, 2005

Conference papers
1.Witecka A., Yamamoto A., Święszkowski W., Improvement of cytocompatibility of magnesium alloy zm21 by surface modification, TMS 2014, The Magnesium Technology Symposium, 2014-02-16/02-20, San Diego (US), DOI: 10.1002/9781118888179.ch71, pp.375-380, 2014
Abstract:

Application of a biodegradable polymer coating is one of the methods to improve the initial corrosion resistance and cytocompatibility of magnesium (Mg) alloys. However, bulging of the coating film during long term immersion has been reported. Therefore, improvement of interface strength between the coating and the substrate surface is a key for the success of this method. Combination of surface modification [silanization with 3- (glycidyloxypropyl) triethoxysilane (GPTES)] and biodegradable polymer coating [poly-L-lactide (PLLA)] were applied to a Mg- 2.0Zn-0.98Mn (ZM21) cast alloy. Results of a cell proliferation assay show that PLLA and GPTES+PLLA coating successfully improved cell growth during 7 days of incubation and suppressed Mg2+ release after 4 days of incubation. The silanization process had no impact on suppression of corrosion. Calcification was observed on all samples after 1 week of incubation with calcification medium, but the calcified area was much larger on the GPTES+PLLA coated sample than on the uncoated sample.

Keywords:

biodegradable metal, ZM21, cytocompatibility, silane-coupling, PLLA

Affiliations:
Witecka A.-other affiliation
Yamamoto A.-National Institute for Materials Science (JP)
Święszkowski W.-IPPT PAN
2.Secomski W., Nowicki A., Święszkowski W., Controlled ultrasonic destruction of the polycaprolactone shell microcapsules based on resonance scattering theory, 10th Polish - Japanese Seminar on Biomedical Engineering - "New Trends in Biomedical and Clinical Engineering", 2009-09-14/09-16, Warszawa (PL), pp.80-84, 2010
Abstract:

The use of the ultrasonically destructible microcapsules as local drug delivery systems continues to grow. Microbubble destruction requires correct ultrasonic frequency equal to its resonance. This frequency depends on the bubble size and polymer shell stiffness. Measurements of the ultrasonic signal, backscattered from microspheres gives practical information of the bubble resonance and nonlinearity.
In experiment, the backscattered power spectrum of measured sample was recorded by an ultrasonic scanner. Radio frequency (RF) data was recorded at 2.0 – 6.6 MHz. The mean particle diameter in the measured sample was 21 μm. The resonance frequency, measured under the microscope, was 0.60 MHz for 43 μm diameter microsphere. The sample volume was 10cm³ and the mean quantity of scatterers was 6•103/cm³.
The simulated power spectrum of the ultrasonic backscattered signal was calculated from the resonance scattering theory for the gas bubbles surrounded by elastic shell.
In conclusion, the measured spectra matched those calculated from the theory. The use of the ultrasonic scanner with RF data output and the high sensitivity, wide bandwidth ultrasonic transducer allows to measure the backscattered signal from the very small quantity of resonance scatterers with satisfactory results at 40 dB signal to noise ratio.

Keywords:

ultrasound, microcapsules, controlled drug delivery, backscattering

Affiliations:
Secomski W.-IPPT PAN
Nowicki A.-IPPT PAN
Święszkowski W.-other affiliation

Conference abstracts
1.Kukla D., Staszczak M., Pieczyska E., Heljak M., Szlązak K., Święszkowski W., Cristea M., Tobushi H., Hayashi S., Evaluation of the properties of polymeric foams with shape memory under load, PCM-CMM 2015, 3rd Polish Congress of Mechanics and 21st Computer Methods in Mechanics, 2015-09-08/09-11, Gdańsk (PL), pp.143-144, 2015
Abstract:

The paper presents the results of experimental investigation on polymer foam with shape memory properties. The research is focused on characterization of the microstructure of the foam and understanding the mechanisms of deformation under static and dynamic loading. Up till now, selected experimental techniques have been applied. Dynamic Mechanical Analysis (DMA) allows determining the extent of the value of the glass transition temperature under different load conditions, which also reveals the transformation temperature range for the SMP foam. Scanning electron microscopy (SEM) shows the foam microstructure in various scales, while X-ray tomography gave 3D microstructure results presenting in addition mechanism of the cells deformation and changes in their geometry under 30 % and 50% strain. BOSE system enables obtaining the results on dynamic loading.

Keywords:

Shape memory polymer foam, Dynamic mechanical analysis, Glass transition temperature, X-ray tomography

Affiliations:
Kukla D.-IPPT PAN
Staszczak M.-IPPT PAN
Pieczyska E.-IPPT PAN
Heljak M.-other affiliation
Szlązak K.-other affiliation
Święszkowski W.-other affiliation
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
2.Urbanek O., Bil M., Święszkowski W., The effect of hydroxyapatite nanoparticles addition on crystallinity and surface properties of bioresorbable nanocomposites after gamma sterylization treatment, 4th Summer Symposium on Nanomaterials and Their Application to Biology and Medicine, 2014-06-15/06-18, Poznań (PL), pp.1, 2014