Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

E. Deckers

Katholieke Universiteit Leuven (BE)


Recent publications
1.  Zieliński T.G., Opiela K.C., Pawłowski P., Dauchez N., Boutin T., Kennedy J., Trimble D., Rice H., Van Damme B., Hannema G., Wróbel R., Kim S., Ghaffari Mosanenzadeh S., Fang N.X., Yang J., Briere de La Hosseraye B., Hornikx M.C.J., Salze E., Galland M.-A., Boonen R., Carvalho de Sousa A., Deckers E., Gaborit M., Groby J.-P., Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: round robin study, Additive Manufacturing, ISSN: 2214-8604, DOI: 10.1016/j.addma.2020.101564, Vol.36, pp.101564-1-24, 2020

Abstract:
The purpose of this work is to check if additive manufacturing technologies are suitable for reproducing porous samples designed for sound absorption. The work is an inter-laboratory test, in which the production of samples and their acoustic measurements are carried out independently by different laboratories, sharing only the same geometry codes describing agreed periodic cellular designs. Different additive manufacturing technologies and equipment are used to make samples. Although most of the results obtained from measurements performed on samples with the same cellular design are very close, it is shown that some discrepancies are due to shape and surface imperfections, or microporosity, induced by the manufacturing process. The proposed periodic cellular designs can be easily reproduced and are suitable for further benchmarking of additive manufacturing techniques for rapid prototyping of acoustic materials and metamaterials.

Keywords:
porous materials, designed periodicity, additive manufacturing, sound absorption

Affiliations:
Zieliński T.G. - IPPT PAN
Opiela K.C. - IPPT PAN
Pawłowski P. - IPPT PAN
Dauchez N. - Sorbonne University Alliance (FR)
Boutin T. - Sorbonne University Alliance (FR)
Kennedy J. - Trinity College (IE)
Trimble D. - Trinity College (IE)
Rice H. - Trinity College (IE)
Van Damme B. - other affiliation
Hannema G. - other affiliation
Wróbel R. - other affiliation
Kim S. - other affiliation
Ghaffari Mosanenzadeh S. - other affiliation
Fang N.X. - other affiliation
Yang J. - Clemson University (US)
Briere de La Hosseraye B. - other affiliation
Hornikx M.C.J. - other affiliation
Salze E. - other affiliation
Galland M.-A. - École Centrale de Lyon (FR)
Boonen R. - other affiliation
Carvalho de Sousa A. - other affiliation
Deckers E. - Katholieke Universiteit Leuven (BE)
Gaborit M. - other affiliation
Groby J.-P. - other affiliation
2.  Zieliński T.G., Chevillotte F., Deckers E., Sound absorption of plates with micro-slits backed with air cavities: analytical estimations, numerical calculations and experimental validations, APPLIED ACOUSTICS, ISSN: 0003-682X, DOI: 10.1016/j.apacoust.2018.11.026, Vol.146, pp.261-279, 2019

Abstract:
This work discusses many practical and some theoretical aspects concerning modelling and design of plates with micro-slits, involving multi-scale calculations based on microstructure. To this end, useful mathematical reductions are demonstrated, and numerical computations are compared with possible analytical estimations. The numerical and analytical approaches are used to calculate the transport parameters for complex micro-perforated (micro-slotted) plates, which allow to determine the effective properties of the equivalent fluid, so that at the macro-scale level the plate can be treated as a specific layer of acoustic fluid. In that way, the sound absorption of micro-slotted plates backed with air cavities can be determined by solving a multi-layer system of Helmholtz equations. Two such examples are presented in the paper and validated experimentally. The first plate has narrow slits precisely cut out using a traditional technique, while the second plate - with an original micro-perforated pattern - is 3D-printed.

Keywords:
micro-slotted plates, micro-perforated plates, sound absorption, microstructure-based modelling, 3D-printing

Affiliations:
Zieliński T.G. - IPPT PAN
Chevillotte F. - MATELYS – Research Lab (FR)
Deckers E. - Katholieke Universiteit Leuven (BE)

Conference papers
1.  Ahsani S., Boukadia R.F., Droz C., Zieliński T.G., Jankowski Ł., Claeys C., Desmet W., Deckers E., On the potential of meta-poro-elastic systems with small mass inclusions to achieve broad band a near-perfect absorption coefficient, ISMA2020 / USD2020, International Conference on Noise and Vibration Engineering / International Conference on Uncertainty in Structural Dynamics, 2020-09-07/09-09, Leuven (BE), pp.2463-2472, 2020

Abstract:
This paper discusses the potential of meta-poro-elastic systems with small mass inclusions to create broadband sound absorption performance under the quarter-wavelength limit. A first feasibility study is done to evaluate whether embedding small mass inclusions in specific types of foam can lead to near-perfect absorption at tuned frequencies. This paper includes an optimization routine to find the material properties that maximize the losses due to the mass inclusion such that a near-perfect/perfect absorption coefficient can be achieved at specified frequencies. The near-perfect absorption is due to the mass-spring effect, which leads to an increase in the viscous loss. Therefore, it is efficient in the viscous regime. The well-known critical frequency, which depends on the porosity and flow resistivity of the material, is commonly used as a criteria to distinguish the viscous regime from the inertial regime. However, for the types of foam of interest to this work, the value of critical frequency is below the mass-spring resonance frequency. Hence, the inverse quality factor is used to provides a more accurate estimation on the frequency at which the transition from the viscous regime to the inertial regime.

Affiliations:
Ahsani S. - Katholieke Universiteit Leuven (BE)
Boukadia R.F. - other affiliation
Droz C. - other affiliation
Zieliński T.G. - IPPT PAN
Jankowski Ł. - IPPT PAN
Claeys C. - Katholieke Universiteit Leuven (BE)
Desmet W. - Katholieke Universiteit Leuven (BE)
Deckers E. - Katholieke Universiteit Leuven (BE)
2.  Ahsani S., Deckers E., Zieliński T.G., Jankowski Ł., Claeys C., Desmet W., Absorption enhancement in poro-elastic materials by mass inclusion, exploiting the mass-spring effect, SMART 2019, 9th ECCOMAS Thematic Conference on Smart Structures and Materials, 2019-07-08/07-11, Paris (FR), pp.1076-1084, 2019

Abstract:
In this paper the possibility of enhancing the absorption coefficient of a poro-elastic material using small, elastic mass inclusions in frequencies lower than the quarter-wavelength resonance of the porous material is discussed. We show that absorption peaks can be achieved not only by what is known in literature as the trapped mode effect, but also by the resonance of small elastic inclusions at low frequencies, which can be interpreted as a mass-spring effect. In this work, the inclusion and the porous skeleton is considered elastic and fully coupled to each other, therefore accounting for all types of energy dissipation i.e. viscous, thermal, and structural losses and energy dissipated due to the relative motion of the fluid phase and the frame excited by the resonating inclusion. Additionally, the inclusions are also modeled as motionless and rigid to distinguish between the trapped mode and/or the modified frame mode effect and the mass-spring effect. Moreover, the distinction between these two effects are explained in more detail by comparing the dissipated energy by each mechanism (viscous, thermal and structural effect).

Keywords:
Meta-porous material, Biot-Allard poroelastic model, Mass-spring effect

Affiliations:
Ahsani S. - Katholieke Universiteit Leuven (BE)
Deckers E. - Katholieke Universiteit Leuven (BE)
Zieliński T.G. - IPPT PAN
Jankowski Ł. - IPPT PAN
Claeys C. - Katholieke Universiteit Leuven (BE)
Desmet W. - Katholieke Universiteit Leuven (BE)
3.  Zieliński T.G., Galland M.-A., Deckers E., Influencing the wave-attenuating coupling of solid and fluid phases in poroelastic layers using piezoelectric inclusions and locally added masses, ISMA 2018 / USD 2018, International Conference on Noise and Vibration Engineering / International Conference on Uncertainty in Structural Dynamics, 2018-09-17/09-19, Leuven (BE), pp.1195-1207, 2018

Abstract:
When airborne acoustic waves penetrate porous media their carrier becomes the air in pores, but also the solid skeleton - provided that it is sufficiently soft. Then, there is a coupled propagation of fluid-borne and solid-borne waves in a poroelastic medium. The coupling of fluid and solid phases of such media can be responsible for significantly better or weaker sound absorption in medium and lower frequency ranges. It has been observed that adding some well-localised small mass inclusions inside a poroelastic layer may improve its acoustic absorption in some medium frequency range, however, at the same time the absorption is usually decreased at some slightly higher frequencies. This situation can be improved by applying additionally an active approach using small piezoelectric inclusions which actively influence the vibrations of the solid skeleton with added masses, so that the interaction between the solid-borne and fluid-borne waves is always directed for a better mutual energy dissipation of the both types of waves.

Affiliations:
Zieliński T.G. - IPPT PAN
Galland M.-A. - École Centrale de Lyon (FR)
Deckers E. - Katholieke Universiteit Leuven (BE)

Conference abstracts
1.  Zieliński T.G., Jankowski Ł., Opiela K.C., Deckers E., Modelling of poroelastic media with localised mass inclusions, SAPEM'2017, SAPEM'2017 - 5th Symposium on the Acoustics of Poro-Elastic Materials, 2017-12-06/12-08, Le Mans (FR), pp.1-2, 2017

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2021