Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

P. Świec



Recent publications
1.  Golasiński K.M., Pieczyska E.A., Maj M., Staszczak M., Świec P., Furuta T., Kuramoto S., Investigation of strain rate sensitivity of gum metal under tension using digital image correlation, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1007/s43452-020-00055-9, Vol.20, No.2, pp.53-1-14, 2020

Abstract:
Mechanical behavior of a multifunctional titanium alloy Gum Metal was investigated by conducting tensile tests at various strain rates and applying digital image correlation (DIC) technique. Stress–strain curves confirmed low Young's modulus and high strength of the alloy. The determined values of yield strength had a tendency to increase, whereas the elongation to the specimen rupture tended to decrease with increasing strain rate. True stress versus strain curves were analyzed using selected lengths of virtual extensometer (VE) placed in the strain localization area. When the initial length of the VE was the same as the gauge length, work hardening was observed macroscopically at lower strain rates, and a softening was seen at higher strain rates. However, the softening effect was not observed at the shorter VE lengths. Evolution of the Hencky strain and rate of deformation tensor component fields were analyzed for various strain rates at selected stages of Gum Metal loading. The DIC analysis demonstrated that for lower strain rates the deformation is macroscopically uniform up to the higher average Hencky strains, whereas for higher strain rates the strain localization occurs at the lower average Hencky strains of the deformation process and takes place in the smaller area. It was also found that for all strain rates applied, the maximal values of Hencky strain immediately before rupture of Gum Metal samples were similar for each of the applied strain rates, and the maximal local values of deformation rate were two orders higher when compared to applied average strain rate values.

Keywords:
titanium alloy, gum metal, strain rate sensitivity, strain localization, digital image correlation, full-field deformation analysis

Affiliations:
Golasiński K.M. - IPPT PAN
Pieczyska E.A. - IPPT PAN
Maj M. - IPPT PAN
Staszczak M. - IPPT PAN
Świec P. - other affiliation
Furuta T. - Toyota Central Research & Development Laboratories (JP)
Kuramoto S. - Ibaraki University Japan (JP)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2021