Michał Wichrowski, M.Sc., Eng.

Department of Mechanics of Materials (ZMM)
Division of Micromechanics of Materials (PMM)
position: doctoral student
telephone: (+48) 22 826 12 81 ext.: 436
room: 138
e-mail: mwichro

Recent publications
1.Regulski W., Szumbarski J., Łaniewski-Wołłk Ł., Gumowski K., Skibiński J., Wichrowski M., Wejrzanowski T., Pressure drop in flow across ceramic foams—A numerical and experimental study, CHEMICAL ENGINEERING SCIENCE, ISSN: 0009-2509, DOI: 10.1016/j.ces.2015.06.043, Vol.137, pp.320-337, 2015
Abstract:

The unique properties of ceramic foams make them well suited to a range of applications in science and engineering such as heat transfer, reaction catalysis, flow stabilization, and filtration. Consequently, a detailed understanding of the transport properties (i.e. permeability, pressure drop) of these foams is essential. This paper presents the results of both numerical and experimental investigations of the morphology and pressure drop in 10 ppi (pores per inch), 20 ppi and 30 ppi ceramic foam specimens with porosity in the range of 75–79%. The numerical simulations were carried out using a GPU implementation of the three-dimensional, multiple-relaxation-time lattice Boltzmann method (MRT-LBM) on geometries of up to 360 million nodes in size. The experiments were undertaken using a water channel. Foam morphology (porosity and specific surface area) was studied on post-processed, computed tomography (CT) images, and the sensitivity of these results to CT image thresholding was also investigated. Comparison of the numerical and experimental data for pressure drop exhibited very good agreement. Additionally, the results of this study were verified against other researchers׳ data and correlations, with varying outcomes.

Keywords:

Ceramic foam, Pressure drop, Lattice Boltzmann method, Darcy–Forchheimer equation, Specific surface area, Pore-scale simulation

Affiliations:
Regulski W.-other affiliation
Szumbarski J.-other affiliation
Łaniewski-Wołłk Ł.-other affiliation
Gumowski K.-other affiliation
Skibiński J.-other affiliation
Wichrowski M.-IPPT PAN
Wejrzanowski T.-other affiliation
2.Lengiewicz J., Wichrowski M., Stupkiewicz S., Mixed formulation and finite element treatment of the mass-conserving cavitation model, TRIBOLOGY INTERNATIONAL, ISSN: 0301-679X, DOI: 10.1016/j.triboint.2013.12.012, Vol.72, pp.143-155, 2014
Abstract:

A mixed formulation of the mass-conserving cavitation model is developed. The cavitation problem is formulated in terms of the hydrodynamic pressure and a complementary variable representing the void fraction in the cavitation zone. Weak form of the mass-balance equation is consistently derived, and it exhibits subtle differences with respect to the available formulations. Finite element treatment preserves the two-field formulation, and a semi-smooth Newton method is applied to solve the resulting discretized equations. A monolithic Newton-based scheme is also applied to solve the fully coupled elastohydrodynamic lubrication problem in the soft-EHL regime. Numerical examples illustrate the performance of the computational scheme.

Keywords:

Lubrication, Cavitation, Reynolds equation, Soft-EHL problem

Affiliations:
Lengiewicz J.-IPPT PAN
Wichrowski M.-other affiliation
Stupkiewicz S.-IPPT PAN