Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Oleksandr M. Myslyvchenko

I. M. Frantsevich Institute for Problems in Materials (UA)

Recent publications
1.  Haponova O., Tarelnyk V., Tarelnyk N., Myslyvchenko M., Nanostructuring of Metallic Surfaces by Electrospark Alloying Method, The Journal of The Minerals, ISSN: 1047-4838, DOI: 10.1007/s11837-023-05940-1, pp.1-13, 2023

Abstract:
A new method of nanostructuring of the surface by electrospark alloying method (ESA) using special processing media (SPM) with carbon nanotubes is proposed. The influence on the ESA regimes and the composition of the SPM on the microstructure and hardness of the coatings has been considered. While processing the Armco iron, with an increase in the discharge energy, the thickness and continuity of the coating increase. In the microstructures, the nanoscale phases of 40 nm to 1300 nm are detected, and they are evenly distributed in the coatings. Adding nanotubes helps to increase the continuity, thickness and hardness. Because of the ESA process, coatings with a uniform distribution of molybdenum are formed. Carbon, apparently in the form of the carbon nanotubes, is concentrated on the surfaces of the samples being processed, regardless of the discharge energy during the ESA process. The use of the proposed ESA method has a positive effect on the quality parameters of the coating.

Affiliations:
Haponova O. - IPPT PAN
Tarelnyk V. - Sumy National Agrarian University (UA)
Tarelnyk N. - Sumy National Agrarian University (UA)
Myslyvchenko M. - I. M. Frantsevich Institute for Problems in Materials (UA)
2.  Tarelnyk V., Haponova O., Tarelnyk N., Myslyvchenko O., Aluminizing of Metal Surfaces by Electric-Spark Alloying, Uspekhi Fiziki Metallov, ISSN: 1608-1021, DOI: 10.15407/ufm.24.02.282, Vol.24, No.2, pp.282-318, 2023

Abstract:
The analysis of the influence of the parameters of electrospark alloying with an aluminium electrode on the quality (roughness, microstructure of the coating, its continuity, phase composition, and microhardness) of the aluminized layer is presented. The effect of finishing methods after aluminizing is evaluated. The heat resistance of the obtained coatings is studied. Metallographic analysis shows that the coating consists of three sections: a ‘white’ layer, a diffusion zone, and the base metal. With an increase in the discharge energy, such quality parameters of the surface layer as thickness, microhardness of both a ‘white’ layer and a transition zone, and roughness are increased. The continuity of a ‘white’ layer at the discharge energy Wp = 0.52 J is low (of 50–60%); with a subsequent increase in the discharge energy, it increases and, at Wp = 6.8 J, it is of 100%. An increase in the discharge energy during electric-spark alloying (ESA) leads to a change in the chemical and phase compositions of the layer: at low discharge energies, a layer is formed, consisting mainly of α-Fe and aluminium oxides. As Wp increases, the layer consists of iron and aluminium intermetallic compounds, as well as free aluminium, that is confirmed by the data of local x-ray microanalysis. For practical application, it is possible to recommend the process of aluminizing by the ESA method, using the modes (discharge energy in the range of 4.6–6.8 J and productivity of 2.0–3.0 cm2/min). Such process provides the formation of a ‘white’ layer with a thickness of 70–130 µm, microhardness of 5000–7500 MPa, roughness (Ra) of 6–9 µm, and continuity of 95–100%. In order to increase the thickness of the aluminized layer, it is recommended to preliminarily apply grease containing aluminium powder to the steel surface and, without waiting for it to dry, carry out ESA with an aluminium electrode. In this case, the coating continuity is of 100%, the layer thickness is of up to 200 µm, and the microhardness is of 4500 MPa. The paper presents the results of study of the quality parameters of multicomponent aluminium-containing coatings of Al–S, Al–C–S, and Al–C–B systems. Replacing the aluminium electrode with graphite one leads to a decrease in the thickness and continuity of a ‘white’ layer, respectively, to 50 µm and 30%. In turn, the microhardness on the surface increases to 9000 MPa. The addition of 0.7 boron to the consistency substance leads to an increase in the thickness and continuity of a ‘white’ layer, respectively, up to 60 µm and 70%. The microhardness on the surface rises to 12000 MPa. In order to reduce the roughness of the surface layer and to obtain continuous coatings, it is recommended to carry out ESA with an aluminium electrode, but at lower modes.

Keywords:
electrospark alloying, coating, aluminizing, microhardness, continuity, roughness, structure, x-ray diffraction analysis, x-ray spectral analysis

Affiliations:
Tarelnyk V. - Sumy National Agrarian University (UA)
Haponova O. - IPPT PAN
Tarelnyk N. - Sumy National Agrarian University (UA)
Myslyvchenko O. - I. M. Frantsevich Institute for Problems in Materials (UA)
3.  Haponova O., Tarelnyk Viacheslav B., Antoszewski B., Radek N., Tarelnyk Nataliia V., Kurp P., Myslyvchenko Oleksandr M., Hoffman J., Technological Features for Controlling Steel Part Quality Parameters by the Method of Electrospark Alloying Using Carburezer Containing Nitrogen—Carbon Components, Materials, ISSN: 1996-1944, DOI: 10.3390/ma15176085, Vol.15, No.6085, pp.1-14, 2022

Abstract:
A new method of surface modification based on the method of electrospark alloying (ESA) using carburizer containing nitrogen—carbon components for producing coatings is considered. New processes have been proposed that include the step of applying saturating media in the form of paste-like nitrogenous and nitrogenous-carbon components, respectively, onto the surface without waiting for those media to dry, conducting the ESA process with the use of a steel electrode-tool, as well as with a graphite electrode-tool. Before applying the saturating media, an aluminium layer is applied onto the surface with the use of the ESA method at a discharge energy of Wp = 0.13–6.80 J. A saturating medium in the form of a paste was applied to the surfaces of specimens of steel C22 and steel C40. During nitriding, nitrocarburizing and carburization by ESA (CESA) processes, with an increase in the discharge energy (Wp), the thickness, micro hardness and continuity of the “white layer” coatings, as well as the magnitude of the surface roughness, increase due to saturation of the steel surface with nitrogen and/or carbon, high cooling rates, formation of non-equilibrium structures, formation of special phases, etc. In the course of nitriding, nitrocarburizing and CESA processing of steels C22 and C40, preliminary processing with the use of the ESA method by aluminum increases the thickness, microhardness and continuity of the “white layer”, while the roughness changes insignificantly. Analysis of the phase composition indicates that the presence of the aluminum sublayer leads to the formation of the aluminum-containing phases, resulting in a significant increase in the hardness and, in addition, in an increase in the thickness and quality of the surface layers. The proposed methods can be used to strengthen the surface layers of the critical parts and their elements for compressor and pumping equipment

Keywords:
electrospark alloying,coatings,roughness,structure,microhardness,continuity,X-ray diffraction analysis,nitriding,nitrocarburizing,carburization

Affiliations:
Haponova O. - IPPT PAN
Tarelnyk Viacheslav B. - Sumy National Agrarian University (UA)
Antoszewski B. - Kielce University of Technology (PL)
Radek N. - other affiliation
Tarelnyk Nataliia V. - Sumy National Agrarian University (UA)
Kurp P. - Kielce University of Technology (PL)
Myslyvchenko Oleksandr M. - I. M. Frantsevich Institute for Problems in Materials (UA)
Hoffman J. - IPPT PAN
4.  Myslyvchenko O., Bondar A., Voblikov V., Tsyganenko N., Silinska T., Haponova O., Solidus Temperatures and Hot Hardness of Ti–Nb–Mo Alloys, Metallofizika i Noveishie Tekhnologii, ISSN: 1024-1809, DOI: 10.15407/mfint.44.04.0459, Vol.44, No.4, pp.459-469, 2022

Abstract:
Eight alloys of the Ti–Nb–Mo system are synthesized by the arc remelting method. As shown, they have dendritic microstructures typical of casting. The phase composition and lattice periods of the formed phases are determined. Using the method of differential thermal analysis (DTA), phase transformations in the solid state are investigated, and the temperatures of the onset of melting and crystallization are determined. For alloys, the solidus temperature of which is above 2000°C, together with DTA, the Pirani–Althermum pyrometric method is also used. Based on the experimental data, the temperature dependences of the hardness of the alloys are constructed and the activation energies of deformation of the material under the indenter are calculated. The analysis of the curves of the dependence of the hardness of the alloys is carried out and the temperature of the sharp softening of the material is determined. As shown, that the α→β transition in titanium alloys with an unstable β-phase does not lead to a significant change in hardness.

Keywords:
solidus temperature, hot hardness, high-temperature strength, titanium alloys, crystal structure

Affiliations:
Myslyvchenko O. - I. M. Frantsevich Institute for Problems in Materials (UA)
Bondar A. - other affiliation
Voblikov V. - other affiliation
Tsyganenko N. - other affiliation
Silinska T. - other affiliation
Haponova O. - IPPT PAN

Protection Rights
Filing No./Date
Filing Publication
Autors
Type and Title of Protected Intellectual Property
Country of Protection, Authorized Entities
Protection Rights Number
Date of Grant
pdf
u 2022 04564
2022-12-05
-
-
Haponova O., Tarelnyk N.V., Tarelnyk V.B., Zhylenko T.I., Myslyvchenko O.M., Okhrimenko V.O., Holub N.R.
wzór użytkowy
Method for increasing the wear resistance of the working surfaces of steel rings of pulsed mechanical seals subject to radiation irradiation
UA, Sumski Uniwersytet Państwowy
153145
Biuletyn 21
2023-05-24
u 2022 03922
2022-10-19
-
-
Haponova O., Tarelnyk N.V., Tarelnyk V.B., Zhylenko T.I., Myslyvchenko O.M., Dudchenko V.V., Holub N.R.
wzór użytkowy
Method for increasing the wear resistance of steel parts of equipment operating under radiation exposure
UA, Sumski Uniwersytet Państwowy
152967
Biuletyn 18
2023-05-03

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024