Prof. Elżbieta Kossecka, Ph.D., Dr. Habil.

Department of Intelligent Technologies (ZTI)
telephone: (+48) 22 826 12 81 ext.: 441
room: 608
e-mail: ekossec

Doctoral thesis
1969Teoria linii dyslokacji w ośrodku ciągłym 
supervisor -- Prof. Henryk Zorski, Ph.D., Dr. Habil., Eng., IPPT PAN
Habilitation thesis
1974Matematyczna teoria defektów 
1994Title of professor
Supervision of doctoral theses
1.2010-11-25Walczak Tomasz  Wykorzystanie masy termicznej budynku przy sterowaniu jego systemem grzewczym638
2.1996Bzowska Dorota  Wpływ losowych zmian pogody na procesy wymiany ciepła w budynkach 
3.1993Starakiewicz Aleksander  Funkcjonowanie przegród kolektorowo-akumulacyjnych w polskich warunkach klimatycznych 
4.1991Kośny Jan  Teoretyczna i doświadczalna analiza efektywności przegród kolektorowo-akumulacyjnych 

Recent publications
1.Kośny J., Fallahi A., Shukla N., Kossecka E., Ahbari R., Thermal load mitigation and passive cooling in residential attics containing PCM-enhanced insulations, SOLAR ENERGY, ISSN: 0038-092X, DOI: 10.1016/j.solener.2014.05.007, Vol.108, pp.164-177, 2014

Residential attics has the potential to be one of the most energy efficient building components by combining thermal processes of attic floor insulation, attic air space, ventilation in attics, and solar collecting roof decks. Large amounts of solar energy collected by the roofs in cooling-dominated and mixed climates generate excess cooling loads, which need to be removed from the building by the space conditioning systems. This paper investigates potential ways to improve the thermal design of the residential home attics to minimize the cooling energy consumption in the cooling-dominated and mixed climates. Dynamic thermal characteristics of thick attic floor insulations and blends of phase change materials (PCMs) with insulations are analyzed. Both approaches can provide notable reductions of thermal loads at the attic level. In addition, a significant time shift of peak-hour loads can move a major operation time for air conditioning system from the daytime peak hours to nighttime low demand hours. A reverse heat flow direction can be observed during the day in the case of really thick layers of bulk insulation or PCM-enhanced insulations, compared to the rest of the building envelope components. This effect may provide free passive cooling to the building, and can be very useful in locations of double electrical tariffs with high daytime peak-hour electric energy rates and less-expensive off-peak energy cost. In both of the above cases, an addition of PCM to the bulk insulation brings substantial performance enhancement not available for traditional insulation applications. This paper presents a short overview of dynamic material characteristics and energy performance data necessary for future dynamic applications of different configurations of the attic floor insulation and PCM-insulation blends in residential homes. A series of whole-building scale and material scale numerical simulations were performed on a single story ranch house to analyze potential energy savings and optimize location of PCM within the attic insulation.


Building envelopes, Attics, Thermal mass, Insulation

Kośny J.-Fraunhofer Center for Sustainable Energy Systems CSE (US)
Fallahi A.-Paul Scherrer Institut (CH)
Shukla N.-Fraunhofer Center for Sustainable Energy Systems CSE (US)
Kossecka E.-IPPT PAN
Ahbari R.-Fraunhofer Center for Sustainable Energy Systems CSE (US)
2.Kośny J., Kossecka E., Brzeziński A., Tleoubaev A., Yarbrough D., Dynamic thermal performance analysis of fiber insulations containing bio-based phase change materials (PCMs), ENERGY AND BUILDINGS, ISSN: 0378-7788, DOI: 10.1016/j.enbuild.2012.05.021, Vol.52, pp.122-131, 2012

Experimental and theoretical analyses have been performed to determine dynamic thermal characteristics of fiber insulations containing microencapsulated phase change material (PCM). It was followed by a series of transient computer simulations to investigate the performance of a wood-framed wall assembly with PCM-enhanced fiber insulation in different climatic conditions. A novel lab-scale testing procedure with use of the heat flow meter apparatus (HFMA) was introduced in 2009 for the analysis of dynamic thermal characteristics of PCM-enhanced materials. Today, test data on these characteristics is necessary for whole-building simulations, energy analysis, and energy code work. The transient characteristics of PCM-enhanced products depend on the PCM content and a quality of the PCM carrier. In the past, the only existing readily-available method of thermal evaluation of PCMs utilized the differential scanning calorimeter (DSC) methodology. Unfortunately, this method required small and relatively uniform test specimens. This requirement is unrealistic in the case of many PCM-enhanced building envelope products. Small specimens are not representative of PCM-based blends, since these materials are not homogeneous. In this paper, dynamic thermal properties of materials, in which phase change processes occur, are analyzed based on a recently-upgraded dynamic experimental procedure: using the conventional HFMA. In order to theoretically analyze performance of these materials, an integral formula for the total heat flow in finite time interval, across the surface of a wall containing the phase change material, was derived. In numerical analysis of the southern-oriented wall the Typical Meteorological Year (TMY) weather data was used for the summer hot period between June 30th and July 3rd. In these simulations the following three climatic locations were used: Warsaw, Poland, Marseille, France, and Cairo, Egypt. It was found that for internal temperature of 24 °C, peak-hour heat gains were reduced by 23–37% for Marseille and 21–25% for Cairo; similar effects were observed for Warsaw.

Kośny J.-Fraunhofer Center for Sustainable Energy Systems CSE (US)
Kossecka E.-IPPT PAN
Brzeziński A.-LaserComp (US)
Tleoubaev A.-LaserComp (US)
Yarbrough D.-R&D Services (US)
3.Kossecka E., Kośny J., Dynamic thermal performance of the frame wall with PCM-enhanced thermal insulation, ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ, SERIA: BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA, ISSN: 0209-2646, Vol.57, No.4, pp.309-316, 2010
4.Kossecka E., Instalacje fotowoltaiczne w hotelowym budynku energooszczędnym, Czasopismo Techniczne. Mechanika, ISSN: 0011-4561, Vol.106, No.5, pp.121-129, 2009
5.Kossecka E., Kośny J., Dynamiczna metoda pomiaru zawartości materiału fazowo-zmiennego w izolacji włóknistej, FIZYKA BUDOWLI W TEORII I PRAKTYCE, ISSN: 1734-4891, Vol.4, pp.109-112, 2009
6.Kossecka E., Kośny J., Hot box testing of building envelope assemblies, a simplified procedure for estimation of minimum time of the test, JOURNAL OF TESTING AND EVALUATION, ISSN: 0090-3973, Vol.36, No.3, pp.242-249, 2008
7.Kossecka E., Ocena wydajności instalacji fotowoltaicznych w Centrum Badawczym Jabłonna, ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ, SERIA: BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA, ISSN: 0209-2646, Vol.252, No.47, pp.217-224, 2008
8.Kossecka E., The effect of structure and thickness on periodic thermal capacity of building components, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, Vol.LIII, pp.527-539, 2007
9.Kossecka E., Walczak T., Wydajność instalacji fotowoltaicznych w warunkach klimatu Polski, FIZYKA BUDOWLI W TEORII I PRAKTYCE, ISSN: 1734-4891, Vol.II, pp.141-146, 2007
10.Kossecka E., Walczak T., Szacowanie wydajności hybrydowej instalacji solarno-wiatrowej dla domu jednorodzinnego w warunkach klimatu Polski, ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ, SERIA: BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA, ISSN: 0209-2646, Vol.229, pp.277-282, 2006
11.Kossecka E., Wpływ struktury przegród budowlanych na ich periodyczną pojemność cieplną, Czasopismo Techniczne. Mechanika, ISSN: 0011-4561, Vol.103, pp.373-380, 2006
12.Kossecka E., Kośny J., Three-dimensional conduction z-transfer function coefficients determined from the response factors, ENERGY AND BUILDINGS, ISSN: 0378-7788, Vol.37, No.4, pp.301-310, 2005
13.Bzowska D., Chyrczakowski S., Dzieniszewski W., Jędrzejuk H., Kossecka E., Laskowski L., Mołdach J., Podstawy modelowania procesów cieplno-wilgotnościowych w budynkach, Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.15, pp.1-153, 1994
14.Bzowska D., Kossecka E., Analiza promieniowania słonecznego w Warszawie w aspekcie energetyki słonecznej, Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.4, pp.1-49, 1993
15.Bzowska D., Kossecka E., Analiza probabilistyczna dobowych danych pogodowych dla Warszawy, Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.10, pp.1-57, 1992
16.Kossecka E., Łoskot K., Prętczyński Z., Skrócony testowy sezon grzewczy (STSG), Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.12, pp.1-28, 1992
17.Kossecka E., Matematyczna teoria defektów (Praca habilitacyjna), Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.34, pp.1-57, 1974

List of recent monographs
Kossecka E., Gawin D., inni, Program komputerowy WUFI i jego zastosowanie w analizach cieplno-wilgotnościowych przegród budowlanych, Wyd. Politechniki Łódzkiej, Łódź, Gawin D., Kossecka E. (Red.), pp.1-160, 2007
List of chapters in recent monographs
Kośny J., Kossecka E., Yarbrough D., Thermal Conductivity 30 / Thermal Expansion 80 Joint Conferences, rozdział: Use of a Heat Flow Meter to Determine Active PCM Content in an Insulation, DEStech Publications, Inc., Daniela S. Gaal, Peter S. Gaal (Eds.), pp.642-650, 2010
Kossecka E., Renewable energy: innovative technologies and new ideas, rozdział: Performance analysis of the PV system and wind turbine in the Research Centre Jabłonna, Warsaw University of Technology (Warsaw), Chwieduk D., Domański R., Jaworski M. (Eds.), pp.233-240, 2008
Walczak T., Kossecka E., Fizyka budowli w teorii i praktyce, rozdział: Hybrydowa instalacja solarno - wiatrowa dla energooszczędnego domu jednorodzinnego, Politechnika Łódzka (Łódź), Kubik J. (Ed.), I, pp.338-345, 2005

Conference papers
1.Kossecka E., Kośny J., Thermal balance of a wall with PCM-enhanced thermal insulation, CESBP 2010, 1st Central European Symposium on Building Physics, 2010-09-13/09-15, Kraków (PL), pp.265-271, 2010

PCM–insulation mixtures functionas light weight thermal mass components.It is expected that these types of dynamic insulation systems will contribute to the objective of reducing energy use in buildings. In this paper, dynamic thermal properties of a material in which phase change occurs are analyzed, using the temperature-dependent specific heat model. Integral formula for the total heat flow in finite time interval, across the surface of a slab of the phase change material was derived. Simulations have been performed to analyze heat transfer through a light-weight wall assembly with PCM-enhanced insulation, in different external climate thermal conditions. Results of simulations indicate that for cyclic processes, the effect of PCM in an insulation layer results in time shifting of the heat flux maxima and not in reduction of the total heat flow. The heat gains maxima, resulting in high cooling loads, are shifted in time by about two hours and reduced upto 22% for not very high external sol-air temperatures.

Kossecka E.-IPPT PAN
Kośny J.-Fraunhofer Center for Sustainable Energy Systems CSE (US)
2.Kośny J., Yarbrough D., Miller W., Shrestha S., Kossecka E., Lee E., Numerical and Experimental Analysis of Building Envelopes Containing Blown Fiberglass Insulation Thermally Enhanced with Phase Change Material (PCM), CESBP 2010, 1st Central European Symposium on Building Physics, 2010-09-13/09-15, Kraków (PL), pp.272-278, 2010

Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings for at least 4 decades. Most of historical studies have found that PCMs enhance building energy performance. The PCMs store energy and alter the temperature gradient through the insulated cavity because they remain at a nearly constant temperature during the melting and solidifying stages. The use of organic PCMs to enhance the performance of thermal insulation in the building envelope was studied at the Oak Ridge National Laboratory during 2000 – 2009. PCMs reduce heat flow across an insulated region by absorbing and desorbing heat (charging and discharging) in response to ambient temperature cycles. The amount of heat that can be stored in PCMs is directly related to the heat of fusion of the material, which is between 116 J/g to 163 J/g (or 50 to 70 Btu/lb) for the most - popular micro encapsulated paraffinic PCMs, or fatty acid materials used in this research. This paper presents experimental and numerical results from the long-term thermal performance study focused on blown fiber glass insulation modified with a novel spray-applied micro encapsulated PCM. Experimental results are reported for both laboratory - scale and full - size building elements tested in the field. Test work was followed by detailed whole building Energy Plus simulations in order to generate energy performance data for different US climates.

Kośny J.-Fraunhofer Center for Sustainable Energy Systems CSE (US)
Yarbrough D.-R&D Services (US)
Miller W.-Oak Ridge National Laboratory (US)
Shrestha S.-Oak Ridge National Laboratory (US)
Kossecka E.-IPPT PAN
Lee E.-Oklahoma State University (US)