1. |
Wiśniewski K., Turska E.^{♦}, Reduced representations of assumed fields for Hu–Washizu solid-shell element,
COMPUTATIONAL MECHANICS, ISSN: 0178-7675, DOI: 10.1007/s00466-023-02275-1, Vol.71, pp.957-990, 2023Abstract: Mixed eight-node (hexahedron) solid-shell elements based on the standard or partial version of the three-field Hu–Washizu (HW) functionals are developed for Green strain. Three reduced representations of the assumed stress/strain fields are selected. They improve effectiveness, yet retaining good accuracy and convergence properties. At the outset, the standard HW functional and the assumed stress/strain representations of the 3D solid element B8-15P (Weissman in Int J Numer Methods Eng 39:2337–2361, 1996) are used to derive a solid-shell element with 51 parameters. To eliminate locking, the ANS method is applied to the thickness strain (Betsch and Stein in Commun Numer Methods Eng 11:899–909, 1995) and to the transverse shear strain (Dvorkin and Bathe in Eng Comput 1:77–88, 1984). It is a correct element which, however, yields too large displacements for coarse meshes and trapezoidal through-thickness shapes. To improve the above formulation, the ζ-independent reduced representations of the assumed stress/ strain fields are selected and the transformations to Cartesian components are modified. The thickness strain is enhanced by the EAS method. The element with 35 parameters is derived from the standard/enhanced HW functional, but, to further reduce the assumed fields, partial/enhanced HW functionals are constructed from the 3D potential energy by applying the Lagrange multiplier method only to selected strain components. In the element with 27 parameters, this is applied to the constant in-plane strain and to the transverse shear strain while in the element with 19 parameters, to the constant in-plane strain only.Two other modifications are implemented to enhance the behavior of these elements: (A) the skew coordinates are used in the reduced representations of the in-plane stress/strain (Wisniewski and Turska in Int J Numer Methods Eng 90:506–536, 2012), and (B) the Residual Bending Flexibility correction of the transverse shear stiffness (MacNeal in Comput Struct 8(2):175–183, 1978) is adapted. Finally, the performance of the proposed solid-shell HW elements is demonstrated on several linear and non-linear examples for the linear elastic material and the hyper-elastic material. The proposed elements are compared to each other and to the best existing elements of this class. Keywords: Eight-node (hexahedron) solid-shell elements , Standard or partial Hu–Washizu functionals, Reduced representations of assumed stress/strain , RBF correction Affiliations:
Wiśniewski K. | - | IPPT PAN | Turska E. | - | Polish-Japanese Academy of Information Technology (PL) |
| |
2. |
Meissner M., Wiśniewski K., Investigation of damping effects on low-frequency steady-state acoustical behaviour of coupled spaces,
Royal Society Open Science, ISSN: 2054-5703, DOI: 10.1098/rsos.200514, Vol.7, No.8, pp.200514-1-14, 2020Abstract: In the low-frequency range, the acoustical behaviour of enclosed spaces is strongly influenced by excited acoustic modes resulting in a spatial irregularity of a steady-state sound field. In the paper, this problem has been examined theoretically and numerically for a system of coupled spaces with complex-valued conditions on boundary surfaces. Using a modal expansion method, an analytic formula for the Green's function was derived allowing to predict the interior sound field for a pure-tone excitation. To quantify the spatial irregularity of steady-state sound field, the parameter referred to as the mean spatial deviation was introduced. A numerical simulation was carried out for the system consisting of two coupled rectangular subspaces. Eigenfunctions and eigenfrequencies for this system were determined using the high-accuracy eigenvalue solver. As was evidenced by computational data, for small sound damping on absorptive walls the mean spatial deviation peaks at frequencies corresponding to eigenfrequencies of strongly localized modes. However, if the sound damping is much higher, the main cause of spatial irregularity of the interior sound field is the appearance of sharp valleys in a spatial distribution of a sound pressure level. Keywords: interior acoustics, coupled spaces, steady-state sound field, modal expansion method, sound damping, Green's function Affiliations:
Meissner M. | - | IPPT PAN | Wiśniewski K. | - | IPPT PAN |
| |
3. |
Meissner M., Wiśniewski K., Influence of room modes on low-frequency transients: theoretical modeling and numerical predictions,
JOURNAL OF SOUND AND VIBRATION, ISSN: 0022-460X, DOI: 10.1016/j.jsv.2019.02.012, Vol.448, pp.19-33, 2019Abstract: In the low-frequency range, a sound reproduction in enclosures is strongly influenced by excited room modes. While the spectral impact of acoustic modes on a room response is well recognized, there is no sufficient knowledge on how these modes affects transients. In the paper this issue has been examined theoretically and numerically for a room excited by a tone burst by using a modal expansion method supported by a computer implementation. To quantify a temporal accuracy of a sound reproduction, the new metrics referred to as the tone burst reproduction error was introduced. The basis for determining this quantity was a deviation between the tone burst amplitude and the amplitude of a sound pressure computed via the Hilbert transform. A numerical simulation was performed for an irregularly shaped enclosure having a form of two-room coupled system. Calculation results have proved that a high inaccuracy of a tone burst reproduction occurs at receiving points corresponding to sharp dips in a distribution of the steady-state sound pressure level. This is because in these points an amplitude of transient sound is much bigger than a tone burst amplitude. It was discovered that strong narrow peaks in the tone burst reproduction error are located at centers of vortices in the active sound intensity vector field. An influence of a sound damping in a room on a reproduction of a tone burst was also examined and it was found that a substantial increase in a wall sound absorption does not significantly improves a tone burst reproduction because it does not eliminate sharp dips in a distribution of the steady-state sound pressure level. Keywords: room acoustics, room modes, transients, tone burst, discrete Hilbert transform, sound intensity vector field Affiliations:
Meissner M. | - | IPPT PAN | Wiśniewski K. | - | IPPT PAN |
| |
4. |
Nowak Z., Nowak M., Pęcherski R.B., Wiśniewski K., Widłaszewski J., Kurp P.^{♦}, Computational modeling of thermoplastic behavior of inconel 718 in application to laser-assisted bending of thin-walled tubes,
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, ISSN: 1543-1649, DOI: 10.1615/IntJMultCompEng.2019029858, Vol.17, No.3, pp.317-338, 2019Abstract: Laser-assisted tube bending is a promising manufacturing process which enables production of forms and shapes that cannot be obtained by purely mechanical bending. It is particularly suitable for high hardness and brittle materials, such as nickel alloys, ceramics and cast iron. In the current paper, mechanical loading and simultaneous heating by a moving laser beam are used in a controlled manner to obtain the required deformation. Experimental investigation of the Inconel 718 (IN718) alloy provides the basis for identification of parameters of two constitutive models, which encompass softening phenomena and the coupling of temperature and strains. Numerical simulations are conducted to provide more insight into the laser-assisted bending process of the IN718 thin-walled tubes. Temperature, stress and deformation fields are determined in sequentially coupled thermomechanical analyses using the FE code ABAQUS. Laser beam is modeled as a surface heat flux using the dedicated DFLUX procedure. The temperature field is used as a thermal load in the static general step, together with an external mechanical load. The process of tube bending is controlled by the displacement of the piston rod of the actuator, while the thrust force is the resulting value. Keywords: laser-assisted bending of tubes, identification of material parameters, numerical simulations Affiliations:
Nowak Z. | - | IPPT PAN | Nowak M. | - | IPPT PAN | Pęcherski R.B. | - | IPPT PAN | Wiśniewski K. | - | IPPT PAN | Widłaszewski J. | - | IPPT PAN | Kurp P. | - | Kielce University of Technology (PL) |
| |
5. |
Wiśniewski K., Turska E.^{♦}, Improved nine-node shell element MITC9i with reduced distortion sensitivity,
COMPUTATIONAL MECHANICS, ISSN: 0178-7675, DOI: 10.1007/s00466-017-1510-4, Vol.62, No.3, pp.499-523, 2018Abstract: The 9-node quadrilateral shell element MITC9i is developed for the Reissner-Mindlin shell inematics, the extended potential energy and Green strain. The following features of its formulation ensure an improved behavior: 1. The MITC technique is used to avoid locking, and we propose improved ransformations for bending and transverse shear strains, which render that all patch tests are passed for the regular mesh, i.e. with straight element sides and middle positions of midside nodes and a central node. 2. To reduce shape distortion effects, the so-called corrected shape functions of Celia and Gray (Int J Numer Meth Eng 20:1447–1459, 1984) are extended to shells and used instead of the standard ones. In effect, all patch tests are passed additionally for shifts of the midside nodes along straight element sides and for arbitrary shifts of the central node. 3. Several extensions of the corrected shape functions are proposed to enable computations of non-flat shells. In particular, a criterion is put forward to determine the shift parameters associated with the central node for non-flat elements. Additionally, the method is presented to construct a parabolic side for a shifted midside node, which improves accuracy for symmetric curved edges. Drilling rotations are included by using the drilling Rotation Constraint equation, in a way consistent with the additive/multiplicative rotation update scheme for large rotations. We show that the corrected shape functions reduce the sensitivity of the solution to the regularization parameter γ of the penalty method for this constraint. The MITC9i shell element is subjected to a range of linear and non-linear tests to show passing the patch tests, the absence of locking, very good accuracy and insensitivity to node shifts. It favorably compares to several other tested 9-node elements. Keywords: 9-node shell element MITC9i, Two-level approximation of strains, Patch tests, Corrected shape functions, Node shift parameters, Coarse mesh accuracy, Drilling rotations Affiliations:
Wiśniewski K. | - | IPPT PAN | Turska E. | - | Polish-Japanese Academy of Information Technology (PL) |
| |
6. |
Jarzębski P., Wiśniewski K., Evaluation of Partial Factorization for Reduction of Finite Element Matrices,
ENGINEERING TRANSACTIONS (ROZPRAWY INŻYNIERSKIE), ISSN: 0867-888X, Vol.65, No.1, pp.163-170, 2017Abstract: In this paper, we present the concept of Partial Factorization [1] and discuss its possible applications to the Finite Element method. We consider: (1) reduction of the element tangent matrix, which is particularly important for mixed/enhanced elements and (2) reduction of the sub-domain matrices of the Domain Decomposition (DD) equation solvers run either sequen-tially on a single machine or in parallel on a cluster of computers. We demonstrate that Partial Factorization can be beneficial for these applications. Keywords: multi-scale models of multi-layer shells, mixed/enhanced finite elements, parallel computing, domain decomposition, solvers Affiliations:
Jarzębski P. | - | IPPT PAN | Wiśniewski K. | - | IPPT PAN |
| |
7. |
Jarzębski P., Wiśniewski K., Taylor R.L.^{♦}, On parallelization of the loop over elements in FEAP,
COMPUTATIONAL MECHANICS, ISSN: 0178-7675, DOI: 10.1007/s00466-015-1156-z, Vol.56, pp.77-86, 2015Abstract: In this paper, we consider parallelization of the loop over elements using OpenMP in FEAP (Taylor, 2014), which is a research FE code, very popular at universities. Even for a serial version of FEAP (a cluster version also exists) such a parallelization is a non-trivial task due to the existing architecture of this code, which complicates efficient parallelization. First, we compare the serial version of FEAP to the parallel code Warp3D (Dodds et al., 2014), considering the usage of time and memory. As we found, Warp3D is much faster but uses more memory than FEAP. An analysis of Warp3D helps us to devise our method of parallelization of the loop over elements. Next, we describe several changes in FEAP, which were necessary to parallelize the loop over elements using OpenMP. In particular, the subroutine assembling elemental matrices is identified as crucial to good performance, and several directives for the mutual exclusion synchronization of OpenMP are implemented and tested. Finally, we demonstrate the performance of the parallelized FEAP, designated as ompFEAP, on numerical examples involving 3D and shell elements of FEAP as well as user’s elements. We conclude that ompFEAP, using the directive ATOMIC for synchronization of the assembling, provides a very good speedup and efficiency. Keywords: Parallelization, OpenMP, Finite element method, FEAP, 3D and shell elements Affiliations:
Jarzębski P. | - | IPPT PAN | Wiśniewski K. | - | IPPT PAN | Taylor R.L. | - | University of California (US) |
| |
8. |
Wiśniewski K., Panasz P., Two improvements in formulation of nine-node element MITC9,
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, ISSN: 0029-5981, DOI: 10.1002/nme.4399, Vol.93, pp.612-634, 2013Abstract: The paper concerns a well-known two-dimensional nine-node quadrilateral element MITC9, which is based on two-level approximations of strains (assumed strain method). The element has good accuracy, but does not pass the patch test.
As the first improvement, we propose a modification of the element's transformations, partly resolving the problem with the patch test. The source of the problem is the use of covariant components in a (local) natural co-basis, different at each sampling point.
As the second improvement, we use the corrected shape functions of Celia MA, Gray WG. An improved isoparametric transformation for finite element analysis. International Journal for Numerical Methods in Engineering 1984; 20:1447–1459, extending their applicability to the nine-node element for plane elasticity and the 3 × 3 integration. Originally, they are tested for an eight-node element for the heat conduction equation and the 4 × 4 integration.
The improved element, designated as MITC9i, is based on the Green strain and derived from the potential energy for the plane stress condition. It is subjected to a range of tests, to confirm that it passes the patch test for several types of mesh distortions, to prove its coarse mesh accuracy and the absence of locking as well as to establish its sensitivity to mesh distortions.
The improved element MITC9i performs substantially better than the MITC9 element, QUAD9** element, and our previous 9-AS element. Keywords: nine-node element, two-level approximation of strains, assumed strain method, two-dimensional MITC9, patch test, sensitivity to shape distortions, coarse mesh accuracy Affiliations:
Wiśniewski K. | - | IPPT PAN | Panasz P. | - | IPPT PAN |
| |
9. |
Panasz P., Wiśniewski K., Turska E.^{♦}, Reduction of mesh distortion effects for nine-node elements using corrected shape functions,
FINITE ELEMENTS IN ANALYSIS AND DESIGN, ISSN: 0168-874X, DOI: 10.1016/j.finel.2012.11.003, Vol.66, pp.83-95, 2013Abstract: The paper concerns two-dimensional nine-node quadrilateral elements based on the Green strain and the two-level approximations of strains. These approximations reduce locking well for regular meshes but cannot prevent the drop of accuracy when the side and central nodes are shifted from the middle positions.
To reduce the deterioration of accuracy when nodes are shifted, we assess the corrected shape functions of Celia and Gray (1984 [10]) as a replacement for the standard isoparametric ones. In Celia and Gray (1984 [10]), the corrected shape functions were tested for an eight-node element, the heat conduction equation and the 4×4 integration. Here, we test their applicability to nine-node elements for plane elasticity and the 3×3-point integration.
We modify and examine four elements: QUAD9⁎⁎ (Huang and Hinton, 1986 [15]), MITC9 [1] and ours 9-AS (Panasz and Wisniewski, 2008 [21]) and MITC9i (Wisniewski and Panasz, 2012 [26]). The elements are subjected to a range of tests involving several types of mesh distortions, to confirm passing of various forms of the patch test, to prove the absence of locking as well as to establish their coarse mesh accuracy and sensitivity to mesh distortions. We show that all the tested elements benefit from using the corrected shape functions, but still remain significant differences in their performance. Keywords: Two-dimensional nine-node elements, Corrected shape functions, Two-level approximations of strains, Patch tests, Shape distortions Affiliations:
Panasz P. | - | IPPT PAN | Wiśniewski K. | - | IPPT PAN | Turska E. | - | Polish-Japanese Academy of Information Technology (PL) |
| |
10. |
Wiśniewski K., Turska E.^{♦}, Four-node mixed Hu-Washizu shell element with drilling rotation,
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, ISSN: 0029-5981, DOI: 10.1002/nme.3335, Vol.90, pp.506-536, 2012Abstract: In this paper, enhanced four-node shell elements with six DOFs/node based on the Hu–Washizu (HW) functional are developed for Green strain. The drilling rotation is included through the drilling rotation constraint equation. The key features of the approach are as follows.
The shell HW functional is derived from the shell potential energy functional, which is an alternative to the derivation from the three-dimensional HW functional. This method is more versatile as it enables the derivation of the so-called partial HW functionals, with different treatment of the bending/twisting part and the transverse shear part of strain energy.
For the membrane part of HW shell elements, a seven-parameter stress, a nine-parameter strain and a two-parameter enhanced assumed displacement gradient enhancement are selected as optimal. The assumed representations of stress and strain are defined in skew coordinates in the natural basis at the element's center. This improves accuracy and has positive theoretical consequences.
The drilling rotation constraint equation is treated by the perturbed Lagrange method. The faulty term resulting from the equal-order approximations of displacements and the drilling rotation is eliminated, and one spurious mode is stabilized using the gamma method. The proposed formulation is insensitive to the element's distortions and yields a large radius of convergence in the examples involving in-plane bending.
The performance of 4 four-node shell HW elements, having different bending/twisting and transverse shear parts, is analyzed on several numerical examples. Such aspects are considered as: accuracy, radius of convergence, required number of iterations of the Newton method or the arc-length method and time of computations. The element with 29 parameters (HW29) is selected as the best performer. Keywords: four-node mixed shell element with six DOFs/node, pure or partial Hu–Washizu functionals, drilling rotation, optimal representations, skew coordinates Affiliations:
Wiśniewski K. | - | IPPT PAN | Turska E. | - | Polish-Japanese Academy of Information Technology (PL) |
| |
11. |
Wiśniewski K., Wagner W.^{♦}, Turska E.^{♦}, Gruttmann F.^{♦}, Four-node Hu-Washizu elements based on skew coordinates and contravariant assumed strain,
COMPUTERS AND STRUCTURES, ISSN: 0045-7949, DOI: 10.1016/j.compstruc.2010.07.008, Vol.88, pp.1278-1284, 2010Abstract: Mixed 4-node elements based on the Hu–Washizu (HW) functional are developed for the representation of the assumed strain in the natural basis at the element’s center, i.e. for the contravariant transformation rule. In other aspects, the formulation is identical as in our previous paper [9], to which this note is an addendum.
Two mixed HW elements based on the 5-parameter stress are developed; they use either the 7-parameter or 9-parameter strain representation. The stress and strain representations are assumed in terms of skew coordinates, see [10]. The numerical tests involving coarse distorted meshes are used to assess the effects of using the contravariant strain representation.
The tests show that both elements pass the discrete inf-sup test. Accuracy of the element based on the 9-parameter strain, designated as HW14-S and selected as the best in [9], remains unaffected. Accuracy of the element based on the 7-parameter strain is significantly improved. Keywords: Four-node finite elements, Hu–Washizu functional, Plane stress, Mixed elements, Skew coordinates, Contravariant assumed strain Affiliations:
Wiśniewski K. | - | IPPT PAN | Wagner W. | - | Karlsruhe Institute of Technology (DE) | Turska E. | - | Polish-Japanese Academy of Information Technology (PL) | Gruttmann F. | - | Technische Universität Darmstadt (DE) |
| |
12. |
Wiśniewski K., Turska E.^{♦}, Improved four-node Hu-Washizu elements based on skew coordinates,
COMPUTERS AND STRUCTURES, ISSN: 0045-7949, DOI: 10.1016/j.compstruc.2009.01.011, Vol.87, pp.407-424, 2009Abstract: Mixed 4-node elements based on the Hu–Washizu (HW) functional are developed for stress and strain representations in various coordinates, including the skew, natural and Cartesian ones. The HW functional is used in incremental form, suitable for non-linear materials. The key features of our approach are as follows.
(1) The representations of stress and strain are assumed in skew coordinates associated with the natural basis at the element’s center, which implies that, for a linear elastic case, the homogenous equilibrium equations and the compatibility condition are satisfied point-wise. For stress, the same 5- and 7-parameter representations as for the Hellinger–Reissner (HR) elements by Wisniewski and Turska [Wisniewski K, Turska E. Improved four-node Hellinger–Reissner elements based on skew coordinates. Int J Numer Methods Eng 2008;76:798–836] are used. For strain, a 9-parameter linear representation is selected.
(2) A mixed element HW14-S using a 5-parameter representation of stresses assumed in skew coordinates is developed from the non-enhanced HW functional. This element is equally accurate as our HR5-S element of Wisniewski and Turska (1998), the HR element by Yuan et al. [Yuan K-Y, Huang Y-S, Pian THH. New strategy for assumed stress for 4-node hybrid stress membrane element. Int J Numer Methods Eng 1993;36:1747–63], and the HW elements by Piltner and Taylor [Piltner R, Taylor RL. A quadrilateral mixed finite element with two enhanced strain modes. Int J Numer Methods Eng 1995;38:1783–808; Piltner R, Taylor RL. A systematic construction of B-bar functions for linear and non-linear mixed-enhanced finite elements for plane elasticity problems. Int J Numer Methods Eng 1999;44:615–39], and Piltner [Piltner R. An implementation of mixed enhanced finite elements with strains assumed in Cartesian and natural element coordinates using sparse View the MathML sourceB¯-matrices. Eng Comput 2000;17(8):933–49]. Compared to these HW elements, our element uses a smaller number of parameters.
(3) A mixed/enhanced element HW18 using a 7-parameter representation of stress is developed from the enhanced HW functional. For the elements based on this stress representation, the strain representation has to be enriched; we use a 2-parameter EADG enhancement. Various combinations of the natural, skew and Cartesian coordinates are tested, and these for which this element performs best are selected.
(4) A specific modification of the FTFFTF product, consisting of the expansion of FF and the selection of meaningful terms in the product, was applied to selected elements. With this modification, the element HW14-S performs better for coarse distorted meshes than the HW elements described in the literature.
The developed elements are based on the Green strain, and are tested for linear and non-linear constitutive laws modified by the zero normal stress condition, because they will be used as a membrane part of a shell element. Several numerical tests show their performance, in particular, their robustness to the element’s shape distortion for coarse meshes. Keywords: 4-Node finite elements, Plane stress, Incremental Hu–Washizu functional, Mixed elements, Mixed/enhanced elements, Skew coordinates Affiliations:
Wiśniewski K. | - | IPPT PAN | Turska E. | - | Polish-Japanese Academy of Information Technology (PL) |
| |
13. |
Wiśniewski K., Turska E.^{♦}, Improved four-node Hellinger-Reissner elements based on skew coordinates,
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, ISSN: 0029-5981, DOI: 10.1002/nme.2343, Vol.76, pp.798-836, 2008Abstract: Mixed four-node elements based on the Hellinger–Reissner (HR) functional are developed for stress representations in various coordinates, including the skew, natural and Cartesian ones. The two-field HR functional is used in the classical form and in the incremental form suitable for non-linear materials.
We argue that the skew coordinates, not the natural ones, should be associated with the natural basis at the element's center. If 5- and 7-parameter stress representations are assumed in these coordinates, then, for a linear elastic case, the homogenous equilibrium equations and the stress form of compatibility equation are satisfied point-wise.
Two mixed four-node elements are developed and tested:
1. An assumed stress element (HR5-S) is developed from the non-enhanced HR functional, for a 5-parameter representation of stresses, formally identical as the one used, for example, in Pian and Sumihara [Int. J. Numer. Meth. Engng 1984; 20:1685–1695], but in terms of skew coordinates. This element is very simple and uses a smaller number of parameters, but is equally accurate as the elements by Yuan et al. [Int. J. Numer. Meth. Engng 1993; 36:1747–1763] and by Piltner and Taylor [Int. J. Numer. Meth. Engng 1995; 38:1783–1808].
2. An assumed stress/enhanced strain element (HR9) is developed from the enhanced HR functional, for a 7-parameter representation of stress and a 2-parameter enhanced assumed displacement gradient or enhanced assumed strain enhancement. Various forms of 7-parameter representations appearing in the literature are reviewed, and we prove that they are linked by a linear onto transformation. The choice of coordinates for the stress and the enhancement turns out to be the crucial factor, and four combinations of coordinates for which the element performs the best are identified.
Both elements are based on the Green strain, and several numerical tests show their good accuracy, in particular, their robustness to shape distortions for coarse meshes. Two update schemes for the multipliers of modes and the incremental constitutive procedure accounting for the plane stress condition for non-linear materials are tested for large deformation problems. Keywords: four-node finite elements, incremental Hellinger–Reissner functional, assumed stress element, assumed stress/enhanced strain element, skew coordinates Affiliations:
Wiśniewski K. | - | IPPT PAN | Turska E. | - | Polish-Japanese Academy of Information Technology (PL) |
| |
14. |
Panasz P., Wiśniewski K., Nine-node shell elements with 6 dofs/node based on two-level approximations,
FINITE ELEMENTS IN ANALYSIS AND DESIGN, ISSN: 0168-874X, DOI: 10.1016/j.finel.2008.05.002, Vol.44, pp.784-796, 2008Abstract: The paper concerns 9-node quadrilateral shell elements derived for Reissner's kinematics. They are based on the Green strain and potential energy, and are applicable to large (unrestricted) rotations. The characteristic features of the developed elements are as follows:
1. Drilling rotation is included via the drill rotation constraint (RC) imposed by the penalty method. Hence, the elements have 6 dofs per node, i.e. three displacements and three rotational parameters, including drilling rotation.
2. Transverse shear and membrane locking as well as the in-plane shear over-stiffening are avoided using the two-level approximation applied to the strain (assumed strain method). This method does not affect the drilling RC.
3. A modification of the two-level approximation method is proposed, consisting in treating the sampling and the numerical integration together, which results in six sampling points being replaced by two sampling lines. The two-level approximation is applied to components in the ortho-normal basis at the element center, which differs our element from the MITC family of elements, which uses the covariant strain components.
4. Selective reduced integration (SRI) approach is revised. The total functional is split into several parts, and a suitable integration rule is found for each part, yielding an efficient element which shows very good mesh convergence.
Two 9-node shell elements are developed and subjected to a range of benchmark tests, to establish the sensitivity to mesh distortion, the coarse mesh accuracy, and to confirm the lack of locking. Our results are compared with results obtained by the MITC9 element of ADINA and the S9R5 element of ABAQUS. Keywords: Nine-node shell elements, 6 dofs/node, Drilling rotation, Two-level approximation, Assumed strain, Selective reduced integration Affiliations:
Panasz P. | - | IPPT PAN | Wiśniewski K. | - | IPPT PAN |
| |
15. |
Wiśniewski K., Kowalczyk P., Turska E., Analytical DSA for explicit dynamics of elastic-plastic shells,
COMPUTATIONAL MECHANICS, ISSN: 0178-7675, DOI: 10.1007/s00466-006-0068-3, Vol.39, No.6, pp.761-785, 2007Abstract: The paper presents an analytical constitutive design sensitivity analysis (DSA) algorithm for explicit dynamics of elastic-plastic finite rotation shells. Two explicit dynamical algorithms for finite rotation shells are presented, and the DSA is developed for the one formulated in terms of the rotation vector and its time derivatives, {ψ,ψ˙,ψ¨}. The hypo-elastic constitutive model based on the Green-McInnis-Naghdi stress rate is used to derive an incremental algorithm in terms of ‘back-rotated’ objects. The associative deviatoric Huber-Mises plasticity modified by plane stress conditions is implemented in the form suitable for finite rotation/small elastic strain increments. The analytical DSA is developed for the above-specified problem, with the design derivatives calculated w.r.t. material parameters. Design-differentiation of the dynamic algorithm and the scheme of handling the history data and the predicted values in differentiation, which is crucial in computing correct derivatives, are described. Besides, we show how to avoid Newton loops in the DSA algorithm, when such a loop is present in the constitutive algorithm. Numerical examples show that, despite a great complexity of the solution algorithm for the finite-rotation elastic-plastic shells, it is feasible to compute analytical design derivatives of very good accuracy. Keywords: Explicit dynamics, Finite rotation shell, Elastic-plastic material, Analytical Design Sensitivity Analysis for constitutive parameters Affiliations:
Wiśniewski K. | - | IPPT PAN | Kowalczyk P. | - | IPPT PAN | Turska E. | - | IPPT PAN |
| |
16. |
Wiśniewski K., Turska E., Enhanced Allman quadrilateral for finite drilling rotations,
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, ISSN: 0045-7825, DOI: 10.1016/j.cma.2005.11.003, Vol.195, pp.6086-6109, 2006Abstract: The paper concerns a four-node quadrilateral element based on Allman shape functions undergoing finite (unrestricted) drilling rotations, and aims at improving its accuracy and facilitating its implementation.
Firstly, the classical Allman shape functions are valid only for small in-plane rotations, and must be used with a co-rotational frame, which embeds finite rotations. We derive a new form of Allman shape functions, which is valid for finite drilling rotations, and allows to avoid the use of such a frame.
Secondly, the classical Allman quadrilateral shows locking in the in-plane shear test. We study this problem, identify its source, and remove it by enhancing the element with two additional modes, via the Enhanced Assumed Displacement Gradient (EADG) method. To accomplish this, we extend the original version of the method to mixed functionals including rotations.
Two variational formulations including the drilling rotation via the rotation constraint (RC) equation are considered; one based on the Green strain, and the other on the relaxed non-symmetric right stretch strain. Numerical tests of the corresponding finite elements show that the improved Allman elements are as exact in linear tests as the EADG4 element, and perform very well in a severe in-plane shear test for one layer of elements undergoing large rotations. Keywords: New Allman shape functions for finite drilling rotations, Enhanced Assumed Displacement Gradient method for formulations with rotations, Enhanced Allman finite elements Affiliations:
Wiśniewski K. | - | IPPT PAN | Turska E. | - | IPPT PAN |
| |
17. |
Wiśniewski K., Kowalczyk P., Turska E., On the computation of design derivatives for Huber–Mises plasticity with non‐linear hardening,
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, ISSN: 0029-5981, DOI: 10.1002/nme.678, Vol.57, No.2, pp.271-300, 2003Abstract: This paper concerns design sensitivity analysis (DSA) for an elasto–plastic material, with material parameters depending on, or serving as, design variables. The considered constitutive model is Huber–Mises deviatoric plasticity with non‐linear isotropic/kinematic hardening, one which is applicable to metals.
The standard radial return algorithm for linear hardening is generalized to account for non‐linear hardening functions. Two generalizations are presented; in both the non‐linearity is treated iteratively, but the iteration loop contains either a scalar equation or a group of tensorial equations. It is proven that the second formulation, which is the one used in some parallel codes, can be equivalently brought to a scalar form, more suitable for design differentiation. The design derivatives of both the algorithms are given explicitly, enabling thus calculation of the ‘explicit’ design derivative of stresses entering the global sensitivity equation.
The paper addresses several issues related to the implementation and testing of the DSA module; among them the concept of verification tests, both outside and inside a FE code, as well as the data handling implied by the algorithm. The numerical tests, which are used for verification of the DSA module, are described. They shed light on (a) the accuracy of the design derivatives, by comparison with finite difference computations and (b) the effect of the finite element formulation on the design derivatives for an isochoric plastic flow. Keywords: design sensitivity analysis, elasto–plastic material with non‐linear hardening, parallel finite element code Affiliations:
Wiśniewski K. | - | IPPT PAN | Kowalczyk P. | - | IPPT PAN | Turska E. | - | IPPT PAN |
| |
18. |
Wiśniewski K., Finite Rotations of Shells and Beams Extended Equations and Numerical Models (Praca habilitacyjna),
Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.9, pp.1-178, 1997 | |
19. |
Wiśniewski K., Analiza numeryczna statycznej stateczności powłoki cylindrycznej obciążonej wiatrem (Praca doktorska),
Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.50, pp.1-144, 1985 | |