Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Monika Barczewska

University of Warmia and Mazury in Olsztyn (PL)

Recent publications
1.  Nakielski P., Rybak D., Jezierska-Woźniak K., Rinoldi C., Sinderewicz E., Staszkiewicz-Chodor J., Haghighat Bayan Mohammad A., Czelejewska W., Urbanek-Świderska O., Kosik-Kozioł A., Barczewska M., Skomorowski M., Holak P., Lipiński S., Maksymowicz W., Pierini F., Minimally invasive intradiscal delivery of BM-MSCs via fibrous microscaffold carriers, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c11710, pp.1-16, 2023

Abstract:
Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but
limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the
safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(L-lactide-co-glycolide) and poly(L-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.

Keywords:
microscaffolds,cell carriers,injectable biomaterials,intervertebral disc,laser micromachining,electrospinning

Affiliations:
Nakielski P. - IPPT PAN
Rybak D. - IPPT PAN
Jezierska-Woźniak K. - other affiliation
Rinoldi C. - IPPT PAN
Sinderewicz E. - other affiliation
Staszkiewicz-Chodor J. - other affiliation
Haghighat Bayan Mohammad A. - IPPT PAN
Czelejewska W. - other affiliation
Urbanek-Świderska O. - IPPT PAN
Kosik-Kozioł A. - IPPT PAN
Barczewska M. - University of Warmia and Mazury in Olsztyn (PL)
Skomorowski M. - other affiliation
Holak P. - other affiliation
Lipiński S. - other affiliation
Maksymowicz W. - University of Warmia and Mazury in Olsztyn (PL)
Pierini F. - IPPT PAN
2.  Nakielski P., Rinoldi C., Pruchniewski M., Pawłowska S., Gazińska M., Strojny B., Rybak D., Jezierska-Woźniak K., Urbanek O., Denis P., Sinderewicz E., Czelejewska W., Staszkiewicz-Chodor J., Grodzik M., Ziai Y., Barczewska M., Maksymowicz W., Pierini F., Laser-assisted fabrication of injectable nanofibrous cell carriers, Small, ISSN: 1613-6810, DOI: 10.1002/smll.202104971, Vol.18, No.2, pp.2104971-1-18, 2022

Abstract:
The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications.

Affiliations:
Nakielski P. - IPPT PAN
Rinoldi C. - IPPT PAN
Pruchniewski M. - other affiliation
Pawłowska S. - IPPT PAN
Gazińska M. - other affiliation
Strojny B. - other affiliation
Rybak D. - IPPT PAN
Jezierska-Woźniak K. - other affiliation
Urbanek O. - IPPT PAN
Denis P. - IPPT PAN
Sinderewicz E. - other affiliation
Czelejewska W. - other affiliation
Staszkiewicz-Chodor J. - other affiliation
Grodzik M. - other affiliation
Ziai Y. - IPPT PAN
Barczewska M. - University of Warmia and Mazury in Olsztyn (PL)
Maksymowicz W. - University of Warmia and Mazury in Olsztyn (PL)
Pierini F. - IPPT PAN

Conference abstracts
1.  Nakielski P., Pawłowska S., Urbanek-Świderska O., Woźniak-Jezierska K., Barczewska M., Maksymowicz W., Injectable scaffolds for tissue engineering, ISSCR 2019, International Society for Stem Cell Research Annual Meeting, 2019-06-26/06-29, Los Angeles (US), pp.277-277, 2019

Abstract:
Intervertebral disc diseases are a significant medical problem affecting many people around the world. In Poland, the statistics of the Social Insurance Institution (Medical Abuse in 2016) indicate that low back pains and other intervertebral disc diseases constitute 17% of the total number of days of sick leave. In connection with the above, current work describes design of a composite scaffold as a carrier in cell therapy, which will contribute to the regeneration of the intervertebral disc, including the increase of its height. Our composite scaffold include nanofibers that were prepared with the use of the electrospinning method. This method is a simple but powerful technique for fabricating desirable nano- and microfibers by using a high potential electric field. Human Mesenchymal stem cells (MSCs) were cultured on the scaffold from poly(L-lactide). Proliferation kits and fluorescence microscopy were used to asses cells’ viability and adherence to the nanofibers’ surface. hMSCs were efficiently cultured on the nanofibrous scaffold. Cells could be readily detected in porous structure of the scaffold after 7 and 14 days of culture. Viability and proliferation kits proved that the material is not toxic. Drug release from nanofibrous material of model growth factor was conducted with pharmacopeia protocols. Drug release of the 14 kDa growth factor was achieved for 14 days without burst release. Nanofibrous biomaterials prove their advances in many tissue engineering applications. Adjustable porosity of the scaffold and the biocompability of biomaterial make it perfect candidate for cells’ scaffold in many medical procedures and also as a drug release carrier. With the use of single nanofibers, such biomaterials can also be readily used in minimally invasive procedures to regenerate IVD.

Keywords:
nanofibers, IVD, MSC

Affiliations:
Nakielski P. - IPPT PAN
Pawłowska S. - IPPT PAN
Urbanek-Świderska O. - IPPT PAN
Woźniak-Jezierska K. - University of Warmia and Mazury in Olsztyn (PL)
Barczewska M. - University of Warmia and Mazury in Olsztyn (PL)
Maksymowicz W. - University of Warmia and Mazury in Olsztyn (PL)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024