Institute of Fundamental Technological Research
Polish Academy of Sciences

Staff

Daniel Rybak, MSc

Department of Biosystems and Soft Matter (ZBiMM)
position: PhD Student
PhD student
telephone: (+48) 22 826 12 81 ext.: 422
room: 227
e-mail:

Recent publications
1.  Rybak D., Rinoldi C., Nakielski P., Du J., Haghighat Bayan Mohammad A., Zargarian Seyed S., Pruchniewski M., Li X., Strojny-Cieślak B., Ding B., Pierini F., Injectable and self-healable nano-architectured hydrogel for NIR-light responsive chemo- and photothermal bacterial eradication, JOURNAL OF MATERIALS CHEMISTRY B , ISSN: 2050-7518, DOI: 10.1039/D3TB02693K, pp.1-21, 2024

Abstract:
Hydrogels with multifunctional properties activated at specific times have gained significant attention in the biomedical field. As bacterial infections can cause severe complications that negatively impact wound repair, herein, we present the development of a stimuli-responsive, injectable, and in situ-forming hydrogel with antibacterial, self-healing, and drug-delivery properties. In this study, we prepared a Pluronic F-127 (PF127) and sodium alginate (SA)-based hydrogel that can be targeted to a specific tissue via injection. The PF127/SA hydrogel was incorporated with polymeric short-filaments (SFs) containing an anti-inflammatory drug – ketoprofen, and stimuli-responsive polydopamine (PDA) particles. The hydrogel, after injection, could be in situ gelated at the body temperature, showing great in vitro stability and self-healing ability after 4 h of incubation. The SFs and PDA improved the hydrogel injectability and compressive strength. The introduction of PDA significantly accelerated the KET release under near-infrared light exposure and extended its release validity period. The excellent composites’ photo-thermal performance led to antibacterial activity against representative Gram-positive and Gram-negative bacteria, resulting in 99.9% E. coli and S. aureus eradication after 10 min of NIR light irradiation. In vitro, fibroblast L929 cell studies confirmed the materials’ biocompatibility and paved the way toward further in vivo and clinical application of the system for chronic wound treatments.

Affiliations:
Rybak D. - IPPT PAN
Rinoldi C. - IPPT PAN
Nakielski P. - IPPT PAN
Du J. - University of California (US)
Haghighat Bayan Mohammad A. - IPPT PAN
Zargarian Seyed S. - IPPT PAN
Pruchniewski M. - other affiliation
Li X. - Donghua University (CN)
Strojny-Cieślak B. - other affiliation
Ding B. - Donghua University (CN)
Pierini F. - IPPT PAN
2.  Haghighat Bayan Mohammad A., Rinoldi C., Rybak D., Zargarian Seyed S., Zakrzewska A., Cegielska O., Põhako-Palu K., Zhang S., Stobnicka-Kupiec A., Górny Rafał L., Nakielski P., Kogermann K., De Sio L., Ding B., Pierini F., Engineering surgical face masks with photothermal and photodynamic plasmonic nanostructures for enhancing filtration and on-demand pathogen eradication, Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/d3bm01125a, pp.1-15, 2024

Abstract:
The shortage of face masks and the lack of antipathogenic functions has been significant since the recent pandemic's inception. Moreover, the disposal of an enormous number of contaminated face masks not only carries a significant environmental impact but also escalates the risk of cross-contamination. This study proposes a strategy to upgrade available surgical masks into antibacterial masks with enhanced particle and bacterial filtration. Plasmonic nanoparticles can provide photodynamic and photothermal functionalities for surgical masks. For this purpose, gold nanorods act as on-demand agents to eliminate pathogens on the surface of the masks upon near-infrared light irradiation. Additionally, the modified masks are furnished with polymer electrospun nanofibrous layers. These electrospun layers can enhance the particle and bacterial filtration efficiency, not at the cost of the pressure drop of the mask. Consequently, fabricating these prototype masks could be a practical approach to upgrading the available masks to alleviate the environmental toll of disposable face masks.

Affiliations:
Haghighat Bayan Mohammad A. - IPPT PAN
Rinoldi C. - IPPT PAN
Rybak D. - IPPT PAN
Zargarian Seyed S. - IPPT PAN
Zakrzewska A. - IPPT PAN
Cegielska O. - IPPT PAN
Põhako-Palu K. - other affiliation
Zhang S. - other affiliation
Stobnicka-Kupiec A. - other affiliation
Górny Rafał L. - other affiliation
Nakielski P. - IPPT PAN
Kogermann K. - other affiliation
De Sio L. - Sapienza University of Rome (IT)
Ding B. - Donghua University (CN)
Pierini F. - IPPT PAN
3.  Nakielski P., Rybak D., Jezierska-Woźniak K., Rinoldi C., Sinderewicz E., Staszkiewicz-Chodor J., Haghighat Bayan Mohammad A., Czelejewska W., Urbanek-Świderska O., Kosik-Kozioł A., Barczewska M., Skomorowski M., Holak P., Lipiński S., Maksymowicz W., Pierini F., Minimally invasive intradiscal delivery of BM-MSCs via fibrous microscaffold carriers, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c11710, pp.1-16, 2023

Abstract:
Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but
limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the
safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(L-lactide-co-glycolide) and poly(L-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.

Keywords:
microscaffolds,cell carriers,injectable biomaterials,intervertebral disc,laser micromachining,electrospinning

Affiliations:
Nakielski P. - IPPT PAN
Rybak D. - IPPT PAN
Jezierska-Woźniak K. - other affiliation
Rinoldi C. - IPPT PAN
Sinderewicz E. - other affiliation
Staszkiewicz-Chodor J. - other affiliation
Haghighat Bayan Mohammad A. - IPPT PAN
Czelejewska W. - other affiliation
Urbanek-Świderska O. - IPPT PAN
Kosik-Kozioł A. - IPPT PAN
Barczewska M. - University of Warmia and Mazury in Olsztyn (PL)
Skomorowski M. - other affiliation
Holak P. - other affiliation
Lipiński S. - other affiliation
Maksymowicz W. - University of Warmia and Mazury in Olsztyn (PL)
Pierini F. - IPPT PAN
4.  Rybak D., Su Y., Li Y., Ding B., Lv X., Li Z., Yeh Y., Nakielski P., Rinoldi C., Pierini F., Dodda Jagan M., Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications, NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/D3NR00807J, Vol.15, No.18, pp.8044-8083, 2023

Abstract:
Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind.

Affiliations:
Rybak D. - IPPT PAN
Su Y. - other affiliation
Li Y. - other affiliation
Ding B. - Donghua University (CN)
Lv X. - other affiliation
Li Z. - other affiliation
Yeh Y. - other affiliation
Nakielski P. - IPPT PAN
Rinoldi C. - IPPT PAN
Pierini F. - IPPT PAN
Dodda Jagan M. - other affiliation
5.  Haghighat Bayan Mohammad A., Dias Yasmin J., Rinoldi C., Nakielski P., Rybak D., Truong Yen B., Yarin A., Pierini F., Near-infrared light activated core-shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on-demand smart drug delivery applications, Journal of Polymer Science, ISSN: 2642-4169, DOI: 10.1002/pol.20220747, Vol.61, No.7, pp.521-533, 2023

Abstract:
Over the last few years, traditional drug delivery systems (DDSs) have been transformed into smart DDSs. Recent advancements in biomedical nanotech-nology resulted in introducing stimuli-responsiveness to drug vehicles. Nano-
platforms can enhance drug release efficacy while reducing the side effects of drugs by taking advantage of the responses to specific internal or external stim-uli. In this study, we developed an electrospun nanofibrous photo-responsive DDSs. The photo-responsivity of the platform enables on-demand elevated drug release. Furthermore, it can provide a sustained release profile and pre-vent burst release and high concentrations of drugs. A coaxial electrospinning setup paired with an electrospraying technique is used to fabricate core-shell PVA-PLGA nanofibers decorated with plasmonic nanoparticles. The fabricated
nanofibers have a hydrophilic PVA and Rhodamine-B (RhB) core, while the shell is hydrophobic PLGA decorated with gold nanorods (Au NRs). The presence of plasmonic nanoparticles enables the platform to twice the amount of drug release besides exhibiting a long-term release. Investigations into the photo-responsive release mechanism demonstrate the system's potential as a “smart” drug delivery platform.

Keywords:
electrospun core-shell nanofibers,NIR-light activation,on-demand drug release,plasmonic nanoparticles,stimuli-responsive nanomaterials

Affiliations:
Haghighat Bayan Mohammad A. - IPPT PAN
Dias Yasmin J. - other affiliation
Rinoldi C. - IPPT PAN
Nakielski P. - IPPT PAN
Rybak D. - IPPT PAN
Truong Yen B. - other affiliation
Yarin A. - Technion-Israel Institute of Technology (IL)
Pierini F. - IPPT PAN
6.  Nakielski P., Rinoldi C., Pruchniewski M., Pawłowska S., Gazińska M., Strojny B., Rybak D., Jezierska-Woźniak K., Urbanek O., Denis P., Sinderewicz E., Czelejewska W., Staszkiewicz-Chodor J., Grodzik M., Ziai Y., Barczewska M., Maksymowicz W., Pierini F., Laser-assisted fabrication of injectable nanofibrous cell carriers, Small, ISSN: 1613-6810, DOI: 10.1002/smll.202104971, Vol.18, No.2, pp.2104971-1-18, 2022

Abstract:
The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications.

Affiliations:
Nakielski P. - IPPT PAN
Rinoldi C. - IPPT PAN
Pruchniewski M. - other affiliation
Pawłowska S. - IPPT PAN
Gazińska M. - other affiliation
Strojny B. - other affiliation
Rybak D. - IPPT PAN
Jezierska-Woźniak K. - other affiliation
Urbanek O. - IPPT PAN
Denis P. - IPPT PAN
Sinderewicz E. - other affiliation
Czelejewska W. - other affiliation
Staszkiewicz-Chodor J. - other affiliation
Grodzik M. - other affiliation
Ziai Y. - IPPT PAN
Barczewska M. - University of Warmia and Mazury in Olsztyn (PL)
Maksymowicz W. - University of Warmia and Mazury in Olsztyn (PL)
Pierini F. - IPPT PAN

Conference abstracts
1.  Rinoldi C., Haghighat Bayan M.A., Rybak D., Nakielski P., Pierini F., Biocompatible photothermal-responsive plasmonic nanocomposites for near infrared-activated bacterial eradication, ESB 2023, 33st Conference of the European Society for Biomaterials, 2023-09-04/09-08, Davos (CH), No.S6.4-O2, pp.-, 2023

Abstract:
In recent years, novel strategies and approaches to develop antimicrobial biomaterials have attracted increasing attention, targeting multi-functional systems to eliminate bacteria from membranes, surfaces, medical devices, infected sites, contact lenses, etc. More specifically, eradicating bacteria (both resident and exogenous) at the wound site is crucial to guarantee fast and effective wound healing without complications, while sterilization of personal protective equipment (e.g., face masks) makes it possible the safe re-use.[1,2] In this frame, photothermal therapy holds great potential since it can kill pathogenic bacteria with minimal invasiveness.[3]

In this study, plasmonic nanoparticles have been combined with biopolymers to provide the system with bactericide functions. More in detail, plasmonic gold nanorods (AuNRs) are encapsulated into electrospun matrices made of poly(lactic-co-glycolic acid) or polyacrylonitrile by loading into the polymeric solution prior to electrospinning or spraying on the already spun material to obtain the final composites (Figure 1A). The photo-thermal properties of the incorporated AuNRs are exploited to activate the near infrared (NIR)-mediated temperature response upon exposure to NIR light. By reaching a temperature > 55°C, the eradication of 99.5% of bacteria is achieved (Figure 1B), while the stability of the composite materials is maintained. Additionally, in vitro biocompatibility tests performed by culturing fibroblast cells onto the proposed systems show suitable biological properties with no toxic or inflammatory reactions. Taking into account the results, the biocompatible photothermal-responsive nanocomposites reveal their potential in photothermal therapy as a wound dressing and face mask coating.

Affiliations:
Rinoldi C. - IPPT PAN
Haghighat Bayan M.A. - IPPT PAN
Rybak D. - IPPT PAN
Nakielski P. - IPPT PAN
Pierini F. - IPPT PAN
2.  Rybak D., Rinoldi C., Nakielski P., Pierini F., Stimuli-responsive 3D printed hydrogel composite with drug-releasing short-filaments for infected wound healing, ESB 2023, 33st Conference of the European Society for Biomaterials, 2023-09-04/09-08, Davos (CH), No.S4.5-O4, pp.-, 2023

Abstract:
Developing an efficient wound dressing has gained significant attention in the biomedical field, as infected wounds can cause severe complications that negatively impact human health. Creating an optimal environment for wound healing and tissue remodeling is crucial. Hydrogel dressings have become increasingly popular for skin repair due to their oxygen permeability, ability to absorb wound exudate, and moisture retention properties1. Additionally, electrospun materials offer unique properties such as biodegradability and the ability to control drug release, which makes them potential candidates for treating infected wounds2. Electrospinning is a simple method for producing ultrafine fibers that range from nano- to micrometers in diameter. Fibers can be used as drug delivery systems, allowing for controlled and on-demand drug release with the addition of stimuli-responsive particles. The main aim of this study was to develop a multi-functional 3D-printed hydrogel composite for infected wound healing. Ketoprofen-loaded poly(lactic-co-glycolic acid) (PLGA) mat incorporated with gold nanorods (AuNRs) was structured to the short filaments (SFs) using the aminolysis method (Fig. 1A). SFs were loaded into 3d printing ink composed of gelatine-methacrylate (GelMA) and alginate sodium (AS) (Fig. 1B). Introducing photo-responsive AuNRs in SFs significantly accelerated the ketoprofen release under near-infrared (NIR) light exposure. The ketoprofen release of the activated platform by NIR light, compared to the non-irradiated system, exhibited a significant elevation of the drug release resulting from the response to the stimuli (Fig. 1C). The composite dressing also showed excellent photo-thermal performance and good mechanical properties. The stability of the print before and after NIR irradiation was also investigated. Moreover, 3D-printed hydrogel demonstrated antibacterial activity under the NIR laser due to the photo-thermal activity, leading to E. coli eradication after multiple times of exposure. Evaluated tests and achieved results paved the way toward further composite’s ex vivo and in vivo application in the field of infected wounds.

Affiliations:
Rybak D. - IPPT PAN
Rinoldi C. - IPPT PAN
Nakielski P. - IPPT PAN
Pierini F. - IPPT PAN
3.  Kosik-Kozioł A., Rybak D., Rinoldi C., Nakielski P., Pierini F., Ferment Oil-Laden Core-Shell Electrospun Nanofibers for Wound Healing Application , Frontiers in Polymer Science 2023 — Seventh International Symposium Frontiers in Polymer Science, 2023-05-30/06-01, Gothenburg (SE), pp.P2.062-P2.062, 2023

Abstract:
Hard-to-heal wounds represent a significant public health problem that often carries a considerable risk of health complications with a negative impact on the quality of a patient's life [1]. The lack of effective treatments for skin damage can be attributed in part to the complexity of a physiological process occurring during the healing and microbial invasion from both resident and exogenous bacteria [2,3]. This research aimed to meet these challenges by developing a multifunctional core-shell nanofiber scaffold releasing the drugs and consisted antimicrobial peptides that hinder bacterial colonization while accelerating the healing process. Core-shell electrospun naofiber systems can control the biomolecule release profile providing sustainable drugs for wound healing. Implemented antimicrobial peptides effectively destroy a large spectrum of pathogens by contact with the cell membrane, decreasing the rate of antibiotic resistance in our healthcare system. The combination of the coaxial system with electrospinning allowed to obtain well-defined fibers. In this study, highly hydrophilic polyvinyl alcohol was confined into water-stable electrospun fibers using optimized polymer blends and cross-linking methods. All employed structures showed ideal morphology, construct's stability over time, and appropriate drug release profile as well as high-cell viability and antimicrobial properties. The developed multifunctional platforms represent a robust and valid candidate for fabricating skin dressings, accelerating the healing of patients' wounds while protecting against bacterial infection.

Keywords:
electrospinning, PVA, Green crosslinking

Affiliations:
Kosik-Kozioł A. - IPPT PAN
Rybak D. - IPPT PAN
Rinoldi C. - IPPT PAN
Nakielski P. - IPPT PAN
Pierini F. - IPPT PAN
4.  Nakielski P., Rinoldi C., Pruchniewski M., Rybak D., Jezierska-Woźniak K., Gazińska M., Strojny B., Grodzik M., Maksymowicz W., Pierini F., Injectable nanofibrous microscaffolds, EHDAES, European Symposium on Electrohydrodynamic Atomization and Electrospinning, 2022-04-27/04-29, Napoli (IT), pp.1, 2022
5.  Nakielski P., Rinoldi C., Pruchniewski M., Rybak D., Jezierska-Woźniak K., Gazińska M., Strojny B., Grodzik M., Maksymowicz W., Pierini F., Injectable nanofibrous microscaffolds for cell and drug delivery, TERMIS-EU 2022, Tissue Engineering and Regenerative Medicine International Society European Chapter Conference 2022, 2022-06-28/07-01, Kraków (PL), pp.1, 2022
6.  Nakielski P., Rinoldi C., Pruchniewski M., Rybak D., Urbanek O., Jezierska- Woźniak K., Grodzik M., Maksymowicz W., Pierini F., Injectable microscaffolds for IVD regeneration, 2022 eCM20: Cartilage and Disc Repair and Regeneration, 2022-06-15/06-18, Davos (CH), pp.33-33, 2022

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024