Rafał Psiuk, Eng.

Department of Experimental Mechanics (ZMD)
Division of Technological Laser Applications (PTZL)
position: lab technician
telephone: (+48) 22 826 12 81 ext.: 236
room: 034
e-mail: rpsiuk

Recent publications
1.Psiuk R., Słomińska H., Hoffman J., Mościcki T., Super-hard films W-B and W-Ti-B deposited from targets sintered by SPS method, Metal Forming, ISSN: 0867-2628, Vol.XXX, No.2, pp.107-120, 2019
Abstract:

With increasing demand for high-performance and long-lasting cutting and forming tools, the members of this expanding class of superhard metals hold promise to address the shortcomings of traditional tool materials. Those shortcoming include their high cost (silicon nitride, cubic boron nitride, and diamond), their inability to cut ferrous metals due to chemical reactions (diamond), instability in the presence of humidity (cubic boron nitride) and relatively low hardness (tungsten carbide). Also the increasing industrial demand for protective coatings with high hardness, good elastic properties and thermal stability calls for the investigation of new material systems. Although transition metal (TM) nitrides are successfully applied for different tasks in automotive or aero-space industries, the search for improved materials is an ongoing topic, being far from its end. In this work the study on deposition of thin films made of new super-hard materials (SHM) such as tungsten boride are presented. Additionally, the influence of doping by titanium of those materials is investigated. Investigated films were deposited by the pulsed laser deposition method. The used targets were synthetized by SPS method. The powders of boron and tungsten in 4.5 to 1 molar faction were used. The films deposited by PLD method have stoichiometric composition such as used targets. The WB2 and WB3 phase are dominant. Research carried out using SEM, XRD and nanoindentation test showed that the phase composition of the targets is more important in the case of laser deposition than magnetron. All obtained layers are very hard and thermally stable. In the case of magnetron sputtering, smooth layers were obtained while the layers deposited by the laser have a very high roughness. Titanium doping increases the amount of WB3 phase in the sintered discs, while it has no significant effect on the properties of the deposited layers.

Keywords:

laser ablation, tungsten borides doped titanium, plasma sintering

Affiliations:
Psiuk R.-IPPT PAN
Słomińska H.-IPPT PAN
Hoffman J.-IPPT PAN
Mościcki T.-IPPT PAN

Conference abstracts
1.Psiuk R., Mościcki T., Denis P., Zirconium-doped tungsten boride thin films deposited by magnetron sputtering combined with pulsed laser deposition, IVC-21, 21st Internatinal Vacuum Congress, 2019-07-01/07-05, Malmo (SE), No.2967-A-1902, pp.1, 2019
2.Psiuk R., Garbiec D., Wiśniewska M., Denis P., Mościcki T., Mikrostruktura i właściwości borków wolframu domieszkowanych cyrkonem wytwarzanych metodą spiekania iskrowo-plazmowego SPS, OSSPS, II Ogólnopolskie Seminarium Spark Plasma Sintering, 2019-10-24/10-24, Warszawa (PL), pp.20-20, 2019
3.Mościcki T., Psiuk R., Słomińska H., Influence of titanium addition on the phase composition and properties of tungsten borides thin films, PLATHINIUM, Plasma Thin film International Union Meeting, 2019-09-23/09-27, Antibes (FR), pp.1-2, 2019
4.Psiuk R., Słomińska H., Chrzanowska-Giżyńska J., Mościcki T., Supertwarde warstwy W-B i W-Ti-B osadzane z tarcz spiekanych metodą SPC, I Ogólnopolskie Seminarium Spark Plasma Sintering, 2018-10-24/10-24, Poznań (PL), pp.25-25, 2018
5.Chrzanowska-Giżyńska J., Denis P., Psiuk R., Słomińska H., Mihailescu I., Ristoscu C., Mościcki T., Szymański Z., Thin WBx and WXTi1-xB2 films deposited by combined magnetron sputtering and pulsed laser deposition technique, ICPEPA-11, 11th International Conference on Photo-Excited Processes and Applications, 2018-09-10/09-14, Vilnius (LT), No.P2, pp.113-113, 2018
6.Słomińska H., Psiuk R., Chrzanowska-Giżyńska J., Mościcki T., The effect of titanium incorporation on the properties of W-Ti-B superhard films deposited by PLD and MS methods, NANOSMAT, 13th International Conference on Surfaces, Coatings and Nanostructured Materials, 2018-09-11/09-14, Gdańsk (PL), No.33, pp.16-17, 2018