Institute of Fundamental Technological Research
Polish Academy of Sciences

Staff

Barbara Kupikowska-Stobba, PhD

Department of Biosystems and Soft Matter (ZBiMM)
Division of Modelling in Biology and Medicine (PMBM)
position: assistant professor
telephone: (+48) 22 826 12 81 ext.: 161
room: 311
e-mail:
ORCID: 0000-0003-0875-3229

Doctoral thesis
2019-06-11 A one-step electrostatic method for encapsulation of cells in alginate-polyethersulfone microcapsules  (IBIB PAN)
supervisor -- Dorota Lewińska, IBIB PAN
 

Recent publications
1.  Kupikowska-Stobba B., Grzeczkowicz M., Lewińska D., A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/j.bbe.2021.05.003, Vol.41, No.4, pp.1347-1364, 2021

Abstract:
Developing accurate methods for the assessment of therapeutic protein release from polymer drug delivery systems (microcapsules, microspheres, nanoparticles, 3D-printed systems) is of paramount importance for new formulation development. The most straightforward method for protein release assessment is spectrophotometric analysis of the release medium surrounding the formulation. However, direct spectrophotometric analysis is inapplicable to formulations releasing interfering compounds (co-encapsulated drugs, additives) absorbing light in the same spectrum as proteins. Conventional protein release assays also require frequent release medium sampling and replacement, which reduces their accuracy. We propose a one-step method to assess protein release from core/shell microcapsules eliminating the need for sampling and allowing selective real-time protein quantitation in the release medium. To prevent spectral interferences, released protein is differentiated from interfering compounds by employing a colorimetric protein assay reagent, forming a colour complex selectively with the protein, as the release medium. To eliminate sampling, we employed a continuous flow closed loop set-up, where the release medium is constantly circulating between microcapsule-containing tank and spectrophotometer. A series of colorimetric protein assay reagents (bromocresol green, tetrabromophenol blue, eosin B, eosin Y, biuret) were evaluated in terms of their applicability as the release medium in described system. Only biuret reagent was found compatible with proposed method due to formation of color complex stable over extended period of time and low adsorption to microcapsules. Presented method allowed effective evaluation of albumin release from alginate-polyethersulfone microcapsules with accuracy equal to conventional ‘sample and separate’ technique. Albumin release followed first-order kinetics with plateau reached after 19 h.

Keywords:
protein release, core-shell microcapsule, continuous flow apparatus, colorimetric protein assay, mass transfer coefficient, albumin

Affiliations:
Kupikowska-Stobba B. - other affiliation
Grzeczkowicz M. - other affiliation
Lewińska D. - Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
2.  Kupikowska-Stobba B., Kasprzak M., Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology, JOURNAL OF MATERIALS CHEMISTRY B , ISSN: 2050-7518, DOI: 10.1039/d1tb00559f, Vol.9, No.26, pp.5221-5244, 2021

Abstract:
Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.

Affiliations:
Kupikowska-Stobba B. - other affiliation
Kasprzak M. - other affiliation
3.  Kupikowska-Stobba B., Lewińska D., Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications, Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/c9bm01337g, Vol.8, No.6, pp.1536-1574, 2020

Abstract:
Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.

Affiliations:
Kupikowska-Stobba B. - other affiliation
Lewińska D. - Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
4.  Dorota Lewińska D., Grzeczkowicz M., Kupikowska-Stobba B., Influence of electric parameters on the alginate-polyethersulfone microcapsule structure, Desalination and Water Treatment, ISSN: 1944-3994, DOI: 10.5004/dwt.2017.11407, Vol.64, pp.400-408, 2017

Abstract:
Alginate-polyethersulfone microcapsules obtained with the one-stage three-nozzle, electrostatic technique designed by our team can successfully be used to encapsulate biologically active material such as functional proteins, microorganisms, bacteria, fungi and mammalian cells. The paper presents the results of studies on the influence of electric parameters on microcapsule size and internal structure. During the manufacturing process, three different liquids, i.e., aqueous sodium alginate solution, separating liquid and membrane-forming solution, were forced through a three-nozzle head, placed in an electrostatic field. After gelling in a gelling bath, the multi-layer drops appearing at the tip of the three-nozzle head formed microcapsules. The electrostatic field was applied through electric impulses with varied values of: voltage (U), frequency (f) and impulse duration (τ). The results indicated, that an increase of all examined electric process parameters resulted in a decrease in average microcapsule diameter and lower uniformity of batches in terms of size. Average membrane thickness (parameter B) did not change significantly, but along with the increase of all electrical parameters, a significant decrease of membrane thickness at the thickest part (parameter N) was observed. The microcapsules that were the most symmetric in regard to membrane thickness were obtained in the series with variable voltage (U).

Keywords:
alginate, microencapsulation of cells, alginate-polyethersulfone microcapsules, electrostatic technique, immobilization

Affiliations:
Dorota Lewińska D. - Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
Grzeczkowicz M. - other affiliation
Kupikowska-Stobba B. - other affiliation

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2022