1. |
Rinoldi C., Ziai Y., Zargarian Seyed S., Nakielski P., Zembrzycki K., Haghighat Bayan Mohammad A., Zakrzewska A., Fiorelli R., Lanzi M.♦, Kostrzewska-Księżyk A.♦, Czajkowski R.♦, Kublik E.♦, Kaczmarek L.♦, Pierini F., In Vivo Chronic Brain Cortex Signal Recording Based on a Soft Conductive Hydrogel Biointerface,
ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.2c17025, Vol.15, No.5, pp.6283-6296, 2023 Abstract: In neuroscience, the acquisition of neural signals from the brain cortex is crucial to analyze brain processes, detect neurological disorders, and offer therapeutic brain–computer interfaces. The design of neural interfaces conformable to the brain tissue is one of today’s major challenges since the insufficient biocompatibility of those systems provokes a fibrotic encapsulation response, leading to an inaccurate signal recording and tissue damage precluding long-term/permanent implants. The design and production of a novel soft neural biointerface made of polyacrylamide hydrogels loaded with plasmonic silver nanocubes are reported herein. Hydrogels are surrounded by a silicon-based template as a supporting element for guaranteeing an intimate neural-hydrogel contact while making possible stable recordings from specific sites in the brain cortex. The nanostructured hydrogels show superior electroconductivity while mimicking the mechanical characteristics of the brain tissue. Furthermore, in vitro biological tests performed by culturing neural progenitor cells demonstrate the biocompatibility of hydrogels along with neuronal differentiation. In vivo chronic neuroinflammation tests on a mouse model show no adverse immune response toward the nanostructured hydrogel-based neural interface. Additionally, electrocorticography acquisitions indicate that the proposed platform permits long-term efficient recordings of neural signals, revealing the suitability of the system as a chronic neural biointerface. Keywords: brain−machine interface,conductive hydrogels,nanostructured biomaterials,in vitro and in vivo biocompatibility,long-term neural recording Affiliations:
Rinoldi C. | - | IPPT PAN | Ziai Y. | - | IPPT PAN | Zargarian Seyed S. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Zembrzycki K. | - | IPPT PAN | Haghighat Bayan Mohammad A. | - | IPPT PAN | Zakrzewska A. | - | IPPT PAN | Fiorelli R. | - | IPPT PAN | Lanzi M. | - | University of Bologna (IT) | Kostrzewska-Księżyk A. | - | other affiliation | Czajkowski R. | - | other affiliation | Kublik E. | - | other affiliation | Kaczmarek L. | - | other affiliation | Pierini F. | - | IPPT PAN |
|  |
2. |
Ziai Y., Zargarian Seyed S., Rinoldi C., Nakielski P., Sola A.♦, Lanzi M.♦, Truong Yen B.♦, Pierini F., Conducting polymer-based nanostructured materials for brain–machine interfaces,
WIREs Nanomedicine and Nanobiotechnology, ISSN: 1939-0041, DOI: 10.1002/wnan.1895, Vol.15, No.5, pp.e1895-1-33, 2023 Abstract: As scientists discovered that raw neurological signals could translate into bioelectric information, brain–machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. Keywords: 3D printing,brain–machine interface,conductive hydrogels,electrospinning,neural recording Affiliations:
Ziai Y. | - | IPPT PAN | Zargarian Seyed S. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Sola A. | - | other affiliation | Lanzi M. | - | University of Bologna (IT) | Truong Yen B. | - | other affiliation | Pierini F. | - | IPPT PAN |
|  |
3. |
Zakrzewska A., Zargarian S.S., Rinoldi C., Gradys A.D., Jarząbek D.M., Zanoni M.♦, Gualandi C.♦, Lanzi M.♦, Pierini F., Electrospun Poly(vinyl alcohol)-Based Conductive Semi-interpenetrating Polymer Network Fibrous Hydrogel: A Toolbox for Optimal Cross-Linking,
ACS Materials Au, ISSN: 2694-2461, DOI: 10.1021/acsmaterialsau.3c00025, Vol.3, No.5, pp.464-482, 2023 Abstract: Cross-linking of poly(vinyl alcohol) (PVA) creates a three-dimensional network by bonding adjacent polymer chains. The cross-linked structure, upon immersion in water, turns into a hydrogel, which exhibits unique absorption properties due to the presence of hydrophilic groups within the PVA polymer chains and, simultaneously, ceases to be soluble in water. The properties of PVA can be adjusted by chemical modification or blending with other substances, such as polymers, e.g., conductive poly[3-(potassium-5-butanoate)thiophene-2,5-diyl] (P3KBT). In this work, PVA-based conductive semi-interpenetrating polymer networks (semi-IPNs) are successfully fabricated. The systems are obtained as a result of electrospinning of PVA/P3KBT precursor solutions with different polymer concentrations and then cross-linking using “green”, environmentally safe methods. One approach consists of thermal treatment (H), while the second approach combines stabilization with ethanol and heating (E). The comprehensive characterization allows to evaluate the correlation between the cross-linking methods and properties of nanofibrous hydrogels. While both methods are successful, the cross-linking density is higher in the thermally cross-linked samples, resulting in lower conductivity and swelling ratio compared to the E-treated samples. Moreover, the H-cross-linked systems have better mechanical properties─lower stiffness and greater tensile strength. All the tested systems are biocompatible, and interestingly, due to the presence of P3KBT, they show photoresponsivity to solar radiation generated by the simulator. The results indicate that both methods of PVA cross-linking are highly effective and can be applied to a specific system depending on the target, e.g., biomedical or electronic applications. Keywords: poly(vinyl alcohol),poly[3-(potassium-5-butanoate)thiophene-2.5-diyl],electrospun nanofibers,cross-linking,fibrous hydrogel,semi-IPN Affiliations:
Zakrzewska A. | - | IPPT PAN | Zargarian S.S. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Gradys A.D. | - | IPPT PAN | Jarząbek D.M. | - | IPPT PAN | Zanoni M. | - | other affiliation | Gualandi C. | - | University of Bologna (IT) | Lanzi M. | - | University of Bologna (IT) | Pierini F. | - | IPPT PAN |
|  |
4. |
Rinoldi C., Zargarian S.S., Nakielski P., Li X.♦, Liguori A.♦, Petronella F.♦, Presutti D.♦, Wang Q.♦, Costantini M.♦, De Sio L.♦, Gualandi C.♦, Ding B.♦, Pierini F., Nanotechnology-assisted RNA delivery: from nucleic acid therapeutics to COVID-19 vaccines,
Small Methods, ISSN: 2366-9608, DOI: 10.1002/smtd.202100402, Vol.5, No.9, pp.2100402-1-49, 2021 Abstract: In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists’ enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed. Affiliations:
Rinoldi C. | - | IPPT PAN | Zargarian S.S. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Li X. | - | Donghua University (CN) | Liguori A. | - | University of Bologna (IT) | Petronella F. | - | other affiliation | Presutti D. | - | Institute of Physical Chemistry, Polish Academy of Sciences (PL) | Wang Q. | - | Donghua University (CN) | Costantini M. | - | Sapienza University of Rome (IT) | De Sio L. | - | Sapienza University of Rome (IT) | Gualandi C. | - | University of Bologna (IT) | Ding B. | - | Donghua University (CN) | Pierini F. | - | IPPT PAN |
|  |