Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Britton Jonathan


Recent publications
1.  Nwaji N., Owolabi M. B., Jonathan B., Tebello N., Photophysical and nonlinear optical study of benzothiazole substituted phthalocyanines in solution and thin films , Journal of Porphyrins and Phthalocyanines, ISSN: 1088-4246, DOI: 10.1142/S1088424617500079, Vol.21, pp.Journal of Porphyrins and Phthalocyanines-263, 2017

Abstract:
In this study, the photophysical, nonlinear absorption and nonlinear optical limiting properties of zinc and gallium phthalocyanine complexes: tetrakis[(benzo[d]thiazol-2-yl phenoxy)phthalocyaninato]zinc(II) (3), tetrakis[(benzo[d]thiazol-2-yl phenoxy)phthalocyaninato] gallium(III) chloride (4), tetrakis[(benzo[d]thiazol-2-ylthio)phthalocyaninato] zinc(II) (5), tetrakis[(benzo[d]thiazol-2-ylthio)phthalocyaninato] gallium(III) chloride (6), were investigated both in solution and when embedded in polystyrene thin films using 532 nm laser excitation at 10 ns pulses. It was also observed that complexes that have higher triplet state absorption also possessed enhanced nonlinear and optical limiting behavior. Superior optical performance was observed when the complexes were embedded in thin films compared to when they are in solution. Complex 6 in thin films gave the highest imaginary third-order susceptibility (Im
[X(3)]) and hyperpolarizability (γ) at 4.61 × 10-7
esu and 3.44 × 10-26 esu, respectively, with a low Ilim value of 0.06 J.cm-2

Affiliations:
Nwaji N. - IPPT PAN
Owolabi M. B. - other affiliation
Jonathan B. - other affiliation
Tebello N. - other affiliation
2.  Nwaji N., John M., Jonathan B., Tebello N., Synthesis, photophysical and nonlinear optical properties of a series of ball-type phthalocyanines in solution and thin films, New Journal of chemistry, ISSN: 1144-0546, DOI: 10.1039/C6NJ03662G, Vol.41, pp.New Journal of Chemistry-2020, 2017

Abstract:
In this study, we report on the enhanced nonlinear optical properties of novel tetrakis-4-(hexadecane-1,2-dioxyl)-bis(phthalocyaninato zinc(II)) (4), tetrakis-4-(hexadecane-1,2-dioxyl)-bis(phthalocyaninato gallium chloride) (5) and tetrakis-4-(hexadecane-1,2-dioxyl)-bis(phthalocyaninato indium chloride) (6) both in solution and when embedded in polymer thin films. Complexes 5 and 6 bearing heavy atoms showed enhanced triplet quantum yield and nonlinear optical response. The nonlinear third-order susceptibility and second-order hyperpolarizability values are also reported. Time dependent density functional theory (TD-DFT) calculations were performed in order to explain the origin of the observed UV-vis and magnetic circular dichroism (MCD) spectra of the complexes.

Affiliations:
Nwaji N. - IPPT PAN
John M. - other affiliation
Jonathan B. - other affiliation
Tebello N. - other affiliation
3.  Nwaji N., David O. O., John M., Marcel L., Samson K., Jonathan B., Tebello N., Improved nonlinear optical behaviour of ball type indium (III) phthalocyanine linked to glutathione capped nanoparticles, Dyes and Pigments, ISSN: 1873-3743, DOI: 10.1016/j.dyepig.2017.01.066, Vol.140, pp.Dyes and pigments-417-430, 2017

Abstract:
The synthesis of ball–type indium phthalocyanine (complex 4) and its covalent attachment to glutathione (GSH–) capped (Ag, Au, CdTeSe, CdTeSe/ZnO) nanoparticles are reported in this work. Furthermore, their photophysical and nonlinear optical behaviour were investigated. We observed a decrease in the fluorescence quantum yield with corresponding increase in the triplet quantum yield of the nanoconjugates in comparison to complex 4 alone. The reverse saturable absorption was found to be dependent on excited state absorption. The optical limiting threshold ranges from 0.40–0.78 (J/cm2). The nanoconjugate of the complex 4 with GSH–CdTeSe/ZnO (QD1) accounted for the most improved triplet state parameters and nonlinear optical behaviour in comparison to complex 4 and the other nanoconjugates studied in this work.

Affiliations:
Nwaji N. - IPPT PAN
David O. O. - other affiliation
John M. - other affiliation
Marcel L. - other affiliation
Samson K. - other affiliation
Jonathan B. - other affiliation
Tebello N. - other affiliation

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024