Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Marcin Brykała


Recent publications
1.  Wojtiuk E., Maździarz M., Stasiak T., Brykała M., Chmielewski M., Włoczewski M., Kosińska A., Zielińska K., Haponova O., Jasiński J., Mościcki T., Theoretical and experimental mechanical properties and thermal conductivity of W-Al-B thin films deposited by magnetron sputtering, JOURNAL OF ALLOYS AND COMPOUNDS, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2025.185222, Vol.1049, No.185222, pp.1-14, 2025

Abstract:
This work compares experimentally measue properties of W-Al-B thin films with mechanical properties, density, and thermal conductivity values calculated using DFT methods. Theoretical modelling was conducted to simulate two WB2 stable structures alloyed with varying amounts of aluminium: α-WB2 (P6/mmm) and ω-WB2 (P63/mmc), as well as α-AlB2 (P6/mmm). Using the HiPIMS-DC magnetron sputtering technique, films with α-WB2 structure and varying aluminium contents were deposited at 400 °C. When layers are composed with x = 1.4% aluminium (where x = at%Al / (at%Al + at%W)), their microstructure changes from amorphous to crystalline columnar. A back transformation to an amorphous microstructure occurs when the amount of aluminium exceeds x = 7.3%. An original method was used for the film density studies, which combined mass measurements and microscopic observation. These measurements were then used to determine the layers' thermal conductivity using the thermoreflectance method. The measured conductivity of the deposited ceramic films range from 3 to 6 W/(mK). Moreover, the obtained films are very hard, e.g. H = 36.1 ± 1.7 GPa for x = 1.4% Al, but exhibit a much lower Young's modulus than the theoretical values. The relatively high H/E⁎ ratio > 0.1 for films with low aluminium content indicates anmore elastic character. Ab-initio calculations showed that, based on the criteria of Cauchy pressure (C12-C44) and Pugh's ratio (B/G), the α-WB2 structure may have a ductile nature in contrast to the other structures. However, the deposited films are rather brittle in nature, resulting from an excess of boron. The fracture toughness measurements show higher KIC values for low aluminium content. They are 3.8 MPa√m for WB2, 2.8 MPa√m for x = 1.4%, and 3 MPa√m for x = 7.3% aluminium

Keywords:
thin films, high-power impulse magnetron sputtering, density, thermal conductivity, fracture toughness, stiffness tensor

Affiliations:
Wojtiuk E. - IPPT PAN
Maździarz M. - IPPT PAN
Stasiak T. - other affiliation
Brykała M. - other affiliation
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Włoczewski M. - IPPT PAN
Kosińska A. - other affiliation
Zielińska K. - IPPT PAN
Haponova O. - IPPT PAN
Jasiński J. - other affiliation
Mościcki T. - IPPT PAN

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2025