Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Natalia Sybirna

Ivan Franko Lviv National University (UA)

Recent publications
1.  Kleveta G., Borzęcka K., Zdioruk M., Czerkies M., Kuberczyk H., Sybirna N., Sobota A., Kwiatkowska K., LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility, JOURNAL OF CELLULAR BIOCHEMISTRY, ISSN: 0730-2312, DOI: 10.1002/jcb.23330, Vol.113, No.1, pp.80-92, 2012

Abstract:
Upon bacterial infection lipopolysaccharide (LPS) induces migration of monocytes/macrophages to the invaded region and production of pro-inflammatory mediators. We examined mechanisms of LPS-stimulated motility and found that LPS at 100 ng/ml induced rapid elongation and ruffling of macrophage-like J774 cells. A wound-healing assay revealed that LPS also activated directed cell movement that was followed by TNF-α production. The CD14 and TLR4 receptors of LPS translocated to the leading lamella of polarized cells, where they transiently colocalized triggering local accumulation of actin filaments and phosphatidylinositol 4,5-bisphosphate. Fractionation of Triton X-100 cell lysates revealed that LPS induced polymerization of cytoskeletal actin filaments by 50%, which coincided with the peak of cell motility. This microfilament population appeared at the expense of short filaments composing the plasma membrane skeleton of unstimulated cells and actin monomers consisting prior to the LPS stimulation about 60% of cellular actin. Simultaneously with actin polymerization, LPS stimulated phosphorylation of two actin-regulatory proteins, paxillin on tyrosine 118 by 80% and N-WASP on serine 484/485 by 20%, and these events preceded activation of NF-κB. LPS-induced protein phosphorylation and reorganization of the actin cytoskeleton were inhibited by PP2, a drug affecting activity of tyrosine kinases of the Src family. The data indicate that paxillin and N-WASP are involved in the reorganization of actin cytoskeleton driving motility of LPS-stimulated cells. Disturbances of actin organization induced by cytochalasin D did not inhibit TNF-α production suggesting that LPS-induced cell motility is not required for TNF-α release.

Keywords:
ACTIN CYTOSKELETON, CELL MOTILITY, LPS, N-WASP, PAXILLIN, SRC KINASES

Affiliations:
Kleveta G. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Borzęcka K. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Zdioruk M. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Czerkies M. - other affiliation
Kuberczyk H. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Sybirna N. - Ivan Franko Lviv National University (UA)
Sobota A. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Kwiatkowska K. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024