Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

A. Bernasik


Recent publications
1.  Kaniuk Ł., Ferraris S., Spriano S., Luxbacher T., Krysiak Z., Berniak K., Zaszczyńska A., Marzec M.M., Bernasik A., Sajkiewicz P., Stachewicz U., Time-dependent effects on physicochemical and surface properties of PHBV fibers and films in relation to their interactions with fibroblasts, APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2021.148983, Vol.545, pp.148983-1-13, 2021

Abstract:
Biodegradability or materials physicochemical stability are the key biomaterials selection parameters for various medical and tissue engineering applications. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a natural copolymer known from its biocompatibility with great support for cells growth and attachment on films and fibers. In our studies, the physicochemical properties of electrospun PHBV fibers and spin-coated films aged for 1, 4 and 8 weeks were analyzed using bulk (FTIR) and surface chemistry (XPS) methods and water contact angle. Further, we characterized the zeta potential changes after aging, by means of electrokinetic measurements, and cell responses to it, using NIH 3T3 murine fibroblasts. Colorimetric MTS cell viability test allowed the assessment of cell proliferation. Additionally, the morphology of fibroblasts and biointerfaces were studied by confocal laser and electron scanning microscopy (CLSM and SEM). These studies indicated that the activity, attachment and proliferation of fibroblasts is independent of aging of PHBV fibers and films. PHBV films show very stable zeta potential over 8 weeks of aging, opposite to PHBV fibers. Importantly, the flat film of PHBV increases cell proliferation, while the fibrous meshes are an excellent support for their stretching. The results of the study revealed clear advantages of PHBV films and fibrous meshes in cell-material interaction.

Keywords:
cell morphology, fibroblast, electrospun fibers, PHBV, Zeta potential

Affiliations:
Kaniuk Ł. - other affiliation
Ferraris S. - other affiliation
Spriano S. - other affiliation
Luxbacher T. - other affiliation
Krysiak Z. - other affiliation
Berniak K. - other affiliation
Zaszczyńska A. - IPPT PAN
Marzec M.M. - other affiliation
Bernasik A. - other affiliation
Sajkiewicz P. - IPPT PAN
Stachewicz U. - AGH University of Science and Technology (PL)
2.  Szewczyk P.K., Gradys A., Kyun Kim S., Persano L., Marzec M., Kryshtal A., Busolo T., Toncelli A., Pisignano D., Bernasik A., Kar-Narayan S., Sajkiewicz P., Stachewicz U., Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c02578, Vol.12, No.11, pp.13575-13583, 2020

Abstract:
Piezoelectric polymers are promising energy materials for wearable and implantable applications for replacing bulky batteries in small and flexible electronics. Therefore, many research studies are focused on understanding the behavior of polymers at a molecular level and designing new polymer-based generators using polyvinylidene fluoride (PVDF). In this work, we investigated the influence of voltage polarity and ambient relative humidity in electrospinning of PVDF for energy-harvesting applications. A multitechnique approach combining microscopy and spectroscopy was used to study the content of the β-phase and piezoelectric properties of PVDF fibers. We shed new light on β-phase crystallization in electrospun PVDF and showed the enhanced piezoelectric response of the PVDF fiber-based generator produced with the negative voltage polarity at a relative humidity of 60%. Above all, we proved that not only crystallinity but also surface chemistry is crucial for improving piezoelectric performance in PVDF fibers. Controlling relative humidity and voltage polarity increased the d33 piezoelectric coefficient for PVDF fibers by more than three times and allowed us to generate a power density of 0.6 μW·cm^–2 from PVDF membranes. This study showed that the electrospinning technique can be used as a single-step process for obtaining a vast spectrum of PVDF fibers exhibiting different physicochemical properties with β-phase crystallinity reaching up to 74%. The humidity and voltage polarity are critical factors in respect of chemistry of the material on piezoelectricity of PVDF fibers, which establishes a novel route to engineer materials for energy-harvesting and sensing applications.

Keywords:
PVDF, polymer crystallinity, electrospinning, piezoelectricity, voltage polarity

Affiliations:
Szewczyk P.K. - other affiliation
Gradys A. - IPPT PAN
Kyun Kim S. - other affiliation
Persano L. - other affiliation
Marzec M. - other affiliation
Kryshtal A. - other affiliation
Busolo T. - other affiliation
Toncelli A. - other affiliation
Pisignano D. - other affiliation
Bernasik A. - other affiliation
Kar-Narayan S. - other affiliation
Sajkiewicz P. - IPPT PAN
Stachewicz U. - AGH University of Science and Technology (PL)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2021