Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Massimiliano Lanzi

University of Bologna (IT)


Recent publications
1.  Lanzi M., Pierini F., Efficient and thermally stable BHJ solar cells based on a soluble hydroxy-functionalized regioregular polydodecylthiophene, REACTIVE AND FUNCTIONAL POLYMERS, ISSN: 1381-5148, DOI: 10.1016/j.reactfunctpolym.2020.104803, Vol.158, pp.104803-1-12, 2021

Abstract:
A new regioregular polythiophene derivative, called poly[3-(12-hydroxydodecyl)thiophene] (PT12OH), was synthesized by post-functionalizing its ω-brominated precursor poly[3-(12-bromododecyl)thiophene] (PT12Br) prepared using the Grignard metathesis route. Thanks to the optimal balance between hydrophilic and hydrophobic groups within its structure, PT12OH was highly soluble and easily filmable from common organic solvents allowing for its complete characterization. It also showed enhanced thermal properties, crystallinity, and self-assembling capabilities by the formation of strong inter- and intrachain hydrogen bonds. Bulk heterojunction photovoltaic cells with PT12OH and PC61BM showed a PCE of 4.83% and a remarkable over-time stability, offering good photoconversion efficiency even after 120 h of accelerated aging. Indeed, the PCE decrease was 34% for the hydroxylated polymer and 65% for its brominated precursor. It should also be pointed out that the enhanced thermal stability of PT12OH was achieved without resorting to any complex post-annealing photochemical, thermal, or chemical treatment and was thus directly ascribable to the polymer chemical structure. The simple and effective synthetic procedure, photovoltaic efficiency, and enhanced stability revealed the potential of PT12OH for large-scale organic solar cell applications.

Keywords:
bulk heterojunction solar cell, regioregular polythiophene derivatives, post-polymerization functionalization, over-time stability

Affiliations:
Lanzi M. - University of Bologna (IT)
Pierini F. - IPPT PAN
2.  Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., De Sio L., Urbanek O., Zembrzycki K., Pruchniewski M., Lanzi M., Salatelli E., Calogero A., Kowalewski T.A., Yarin A.L., Pierini F., Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near-Infrared light-driven biomedical applications, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c13266, Vol.12, No.49, pp.54328-54342, 2020

Abstract:
Multifunctional nanomaterials with the ability torespond to near-infrared (NIR) light stimulation are vital for thedevelopment of highly efficient biomedical nanoplatforms with apolytherapeutic approach. Inspired by the mesoglea structure ofjellyfish bells, a biomimetic multifunctional nanostructured pillowwith fast photothermal responsiveness for NIR light-controlled on-demand drug delivery is developed. We fabricate a nanoplatformwith several hierarchical levels designed to generate a series ofcontrolled, rapid, and reversible cascade-like structural changesupon NIR light irradiation. The mechanical contraction of thenanostructured platform, resulting from the increase of temper-ature to 42°C due to plasmonic hydrogel−light interaction, causesa rapid expulsion of water from the inner structure, passing through an electrospun membrane anchored onto the hydrogel core. Themutual effects of the rise in temperature and waterflow stimulate the release of molecules from the nanofibers. To expand thepotential applications of the biomimetic platform, the photothermal responsiveness to reach the typical temperature level forperforming photothermal therapy (PTT) is designed. The on-demand drug model penetration into pig tissue demonstrates theefficiency of the nanostructured platform in the rapid and controlled release of molecules, while the high biocompatibility confirmsthe pillow potential for biomedical applications based on the NIR light-driven multitherapy strategy.

Keywords:
bioinspired materials, NIR-light responsive nanomaterials, multifunctional platforms, electrospun nanofibers, plasmonic hydrogel, photothermal-based polytherapy, on-demand drug delivery

Affiliations:
Nakielski P. - IPPT PAN
Pawłowska S. - IPPT PAN
Rinoldi C. - IPPT PAN
Ziai Y. - IPPT PAN
De Sio L. - Sapienza University of Rome (IT)
Urbanek O. - IPPT PAN
Zembrzycki K. - IPPT PAN
Pruchniewski M. - other affiliation
Lanzi M. - University of Bologna (IT)
Salatelli E. - University of Bologna (IT)
Calogero A. - Sapienza University of Rome (IT)
Kowalewski T.A. - IPPT PAN
Yarin A.L. - Technion-Israel Institute of Technology (IL)
Pierini F. - IPPT PAN
3.  Pierini F., Guglielmelli A., Urbanek O., Nakielski P., Pezzi L., Buda R., Lanzi M., Kowalewski T.A., De Sio L., Thermoplasmonic‐activated hydrogel based dynamic light attenuator, Advanced Optical Materials, ISSN: 2195-1071, DOI: 10.1002/adom.202000324, Vol.8, No.12, pp.2000324-1-7, 2020

Abstract:
This work describes the morphological, optical, and thermo‐optical properties of a temperature‐sensitive hydrogel poly(N‐isopropylacrylamide‐co‐N‐isopropylmethacrylamide) [P(NIPAm‐co‐NIPMAm]) film containing a specific amount of gold nanorods (GNRs). The light‐induced thermoplasmonic heating of GNRs is used to control the optical scattering of an initially transparent hydrogel film. A hydrated P(NIPAm‐co‐NIPMAm) film is optically clear at room temperature. When heated to temperatures over 37 °C via light irradiation with a resonant source (λ = 810 nm) to the GNRs, a reversible phase transition from a swollen hydrated state to a shrunken dehydrated state occurs. This phenomenon causes a drastic and reversible change in the optical transparency from a clear to an opaque state. A significant red shift (≈30 nm) of the longitudinal band can also be seen due to an increased average refractive index surrounding the GNRs. This change is in agreement with an ad hoc theoretical model which uses a modified Gans theory for ellipsoidal nanoparticles. Morphological analysis of the composite film shows the presence of well‐isolated and randomly dispersed GNRs. Thermo‐optical experiments demonstrate an all‐optically controlled light attenuator (65% contrast ratio) which can be easily integrated in several modern optical applications such as smart windows and light‐responsive optical attenuators.

Keywords:
active plasmonics, gold nanorods, hydrogels, optical attenuators, optical transparency, plasmonic nanoparticles, polymers

Affiliations:
Pierini F. - IPPT PAN
Guglielmelli A. - University of Calabria (IT)
Urbanek O. - IPPT PAN
Nakielski P. - IPPT PAN
Pezzi L. - other affiliation
Buda R. - Institute of Physical Chemistry, Polish Academy of Sciences (PL)
Lanzi M. - University of Bologna (IT)
Kowalewski T.A. - IPPT PAN
De Sio L. - Sapienza University of Rome (IT)
4.  Lanzi M., Salatelli E., Marinelli M., Pierini F., Effect of photocrosslinking of D‐A thiophene copolymers on the performance of single‐material solar cells, Macromolecular Chemistry and Physics, ISSN: 1022-1352, DOI: 10.1002/macp.201900433, Vol.221, No.2, pp.1900433-1-12, 2020

Abstract:
Side‐chain C60‐fullerene functionalized alkylthiophene copolymers with different regioregularity and fullerene content are successfully synthesized using a simple and straightforward post‐polymerization functionalization procedure based on a Grignard coupling reaction. The products are employed as single materials in photoactive layers of organic photovoltaic solar cells. The use of double‐cable polymers allows an enhanced control on the nanomorphology of the active blend, reducing the phase‐segregation phenomena as well as the macroscale separation between the electron acceptor and donor components. With the insertion of a thin layer of gold nanoparticles between buffer and active layer of the cells, a conversion efficiency of 5.68% is obtained. Moreover, an increased stability over time is achieved when the copolymers are photocrosslinked immediately after the annealing procedure, leading to acceptable efficiencies even after 80 h of accelerated ageing, a key feature for widespread applicability of the prepared devices.

Keywords:
conjugated polymers, fullerenes, functionalization of polymers, metathesis

Affiliations:
Lanzi M. - University of Bologna (IT)
Salatelli E. - University of Bologna (IT)
Marinelli M. - other affiliation
Pierini F. - IPPT PAN
5.  Lanzi M., Pierini F., Effect of electron-acceptor content on the efficiency of regioregular double-cable thiophene copolymers in single-material organic solar cells, ACS Omega, ISSN: 2470-1343, DOI: 10.1021/acsomega.9b02790, Vol.4, No.22, pp.19863-19874, 2019

Abstract:
Three regioregular thiophenic copolymers, characterized by a bromine atom or a C60-fullerene group at different molar ratios at the end of a decamethylenic plastifying side chain, have been successfully synthesized using a straightforward postpolymerization functionalization procedure based on a Grignard coupling reaction. Owing to their good solubility in common organic solvents, the products were fully characterized using chromatographic, spectroscopic, thermal, and morphological techniques and used as single materials in the photoactive layers of organic solar cells. The photoconversion efficiencies obtained with copolymers were compared with those of a reference cell prepared using a physical blend of the precursor homopolymer and [6,6]-phenyl-C61-butyric acid methyl ester. The best results were obtained with COP2, the copolymer with a 21% molar content of C60-functionalized side chains. The use of the double-cable polymer made possible an enhanced control on the nanomorphology of the active blend, thus reducing phase-segregation phenomena as well as the macroscale separation between the electron-acceptor and -donor components, yielding a power conversion efficiency higher than that of the reference cell (4.05 vs 3.68%). Moreover, the presence of the halogen group was exploited for the photo-cross-linking of the active layer immediately after the thermal annealing procedure. The cross-linked samples showed an increased stability over time, leading to good efficiencies even after 120 h of accelerated aging: this was a key feature for the widespread practical applicability of the prepared devices.

Affiliations:
Lanzi M. - University of Bologna (IT)
Pierini F. - IPPT PAN
6.  Pierini F., Nakielski P., Urbanek O., Pawłowska S., Lanzi M., De Sio L., Kowalewski T.A., Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies, BIOMACROMOLECULES, ISSN: 1525-7797, DOI: 10.1021/acs.biomac.8b01138, Vol.19, No.11, pp.4147-4167, 2018

Abstract:
Materials for the treatment of cancer have been studied comprehensively over the past few decades. Among the various kinds of biomaterials, polymer-based nanomaterials represent one of the most interesting research directions in nanomedicine because their controlled synthesis and tailored designs make it possible to obtain nanostructures with biomimetic features and outstanding biocompatibility. Understanding the chemical and physical mechanisms behind the cascading stimuli-responsiveness of smart polymers is fundamental for the design of multifunctional nanomaterials to be used as photothermal agents for targeted polytherapy. In this review, we offer an in-depth overview of the recent advances in polymer nanomaterials for photothermal therapy, describing the features of three different types of polymer-based nanomaterials. In each case, we systematically show the relevant benefits, highlighting the strategies for developing light-controlled multifunctional nanoplatforms that are responsive in a cascade manner and addressing the open issues by means of an inclusive state-of-the-art review. Moreover, we face further challenges and provide new perspectives for future strategies for developing novel polymeric nanomaterials for photothermally assisted therapies.

Affiliations:
Pierini F. - IPPT PAN
Nakielski P. - IPPT PAN
Urbanek O. - IPPT PAN
Pawłowska S. - IPPT PAN
Lanzi M. - University of Bologna (IT)
De Sio L. - Sapienza University of Rome (IT)
Kowalewski T.A. - IPPT PAN
7.  Lanzi M., Salatelli E., Giorgini L., Marinelli M., Pierini F., Effect of the incorporation of an Ag nanoparticle interlayer on the photovoltaic performance of green bulk heterojunction water-soluble polythiophene solar cells, POLYMER, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2018.07.012, Vol.149, pp.273-285, 2018

Abstract:
Two water-soluble regioregular poly(3-alkylthiophene)s, incorporating aminic groups at the end of the side chains, have been synthesized using a post-polymerization functionalization procedure on a ω-bromine substituted polyalkylthiophene. The high solubility of the obtained polymers in water allowed for the preparation of “green” bulk heterojunction solar cells which reached a power conversion efficiency of 4.85% when PC61BM was used as electron-acceptor material. Improved optical absorption and photocurrent have been obtained by interposing a layer of Ag nanoparticles between the buffer and the photoactive layer, leading to a final power conversion efficiency of 5.51%.

Keywords:
Water-soluble polythiophene, Bulk heterojunction solar cell, Organic photovoltaic

Affiliations:
Lanzi M. - University of Bologna (IT)
Salatelli E. - University of Bologna (IT)
Giorgini L. - University of Bologna (IT)
Marinelli M. - other affiliation
Pierini F. - IPPT PAN
8.  Pierini F., Lanzi M., Nakielski P., Pawłowska S., Urbanek O., Zembrzycki K., Kowalewski T.A., Single-Material Organic Solar Cells Based on Electrospun Fullerene-Grafted Polythiophene Nanofibers, Macromolecules, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.7b00857, Vol.50, No.13, pp.4972-4981, 2017

Abstract:
Highly efficient single-material organic solar cells (SMOCs) based on fullerene-grafted polythiophenes were fabricated by incorporating electrospun one-dimensional (1D) nanostructures obtained from polymer chain stretching. Poly(3-alkylthiophene) chains were chemically tailored in order to reduce the side effects of charge recombination which severely affected SMOC photovoltaic performance. This enabled us to synthesize a donor–acceptor conjugated copolymer with high solubility, molecular weight, regioregularity, and fullerene content. We investigated the correlations among the active layer hierarchical structure given by the inclusion of electrospun nanofibers and the solar cell photovoltaic properties. The results indicated that SMOC efficiency can be strongly increased by optimizing the supramolecular and nanoscale structure of the active layer, while achieving the highest reported efficiency value (PCE = 5.58%). The enhanced performance may be attributed to well-packed and properly oriented polymer chains. Overall, our work demonstrates that the active material structure optimization obtained by including electrospun nanofibers plays a pivotal role in the development of efficient SMOCs and suggests an interesting perspective for the improvement of copolymer-based photovoltaic device performance using an alternative pathway.

Affiliations:
Pierini F. - IPPT PAN
Lanzi M. - University of Bologna (IT)
Nakielski P. - IPPT PAN
Pawłowska S. - IPPT PAN
Urbanek O. - IPPT PAN
Zembrzycki K. - IPPT PAN
Kowalewski T.A. - IPPT PAN
9.  Lanzi M., Salatelli E., Giorgini L., Mucci A., Pierini F., Di-Nicola F.P., Water-soluble polythiophenes as efficient charge-transport layers for the improvement of photovoltaic performance in bulk heterojunction polymeric solar cells, EUROPEAN POLYMER JOURNAL, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2017.10.032, Vol.97, pp.378-388, 2017

Abstract:
Water-soluble regioregular poly{3-[(6-sodium sulfonate)hexyl]thiophene} (PT6S) and poly{3-[(6-trimethylammoniumbromide)hexyl]thiophene} (PT6N) have been synthesized and employed both as photoactive layers for the assembling of “green” bulk-heterojunction organic solar cells and as charge-collection layers in a cell with “classic” architecture. While the photovoltaic performances obtained with the two aforementioned polymers were lower than the reference cell, their latter use allowed to notably increase the inherent J-V properties, leading to a considerable enhancement in the overall photovoltaic output. The power conversion efficiency of the optimized multilayer BHJ solar cell reached 4.78%, revealing a higher efficiency than the reference cell (3.63%).

Keywords:
Water-soluble polymer, Polythiophene derivative, Bulk heterojunction, Organic photovoltaic, Interfacial layer

Affiliations:
Lanzi M. - University of Bologna (IT)
Salatelli E. - University of Bologna (IT)
Giorgini L. - University of Bologna (IT)
Mucci A. - University of Modena (IT)
Pierini F. - IPPT PAN
Di-Nicola F.P. - University of Bologna (IT)
10.  Lanzi M., Salatelli E., Di-Nicola F.P., Zuppiroli L., Pierini F., A new photocrosslinkable oligothiophene for organic solar cells with enhanced stability, MATERIALS CHEMISTRY AND PHYSICS, ISSN: 0254-0584, DOI: 10.1016/j.matchemphys.2016.10.034, Vol.186, pp.98-107, 2017

Abstract:
A novel thiophenic tetramer containing a cinnamate group in the side chain with a functionalization degree of 50% is reported. The tetramer was obtained by means of a simple and straightforward procedure involving the functionalization of a p-methoxyphenoxy substituted thiophenic precursor, which led to a soluble product with a good yield. The oligomer was fully characterized from a structural and chemical point of view and employed for the fabrication of small molecule organic solar cells exploiting the bulk heterojunction (BHJ) architecture. The presence of an UV-light sensitive group in the tetramer allowed the photocrosslinking of tetramer/PCBM blends, giving high values of photocurrent and conversion efficiency for the exposed samples. Moreover, the UV-treated devices showed improved stability, even upon heating for three days at 130 °C, thus confirming that photocrosslinking can strongly reduce phase segregation under severe operational conditions.

Keywords:
electronic materials, polymers, fullerenes, nanostructures, electrical characterization, semiconductors

Affiliations:
Lanzi M. - University of Bologna (IT)
Salatelli E. - University of Bologna (IT)
Di-Nicola F.P. - University of Bologna (IT)
Zuppiroli L. - University of Bologna (IT)
Pierini F. - IPPT PAN
11.  Pierini F., Lanzi M., Nakielski P., Kowalewski T.A., Electrospun Polyaniline-Based Composite Nanofibers: Tuning the Electrical Conductivity by Tailoring the Structure of Thiol-Protected Metal Nanoparticles, Journal of Nanomaterials, ISSN: 1687-4110, DOI: 10.1155/2017/6142140, Vol.2017, pp.6142140-1-10, 2017

Abstract:
Composite nanofibers made of a polyaniline-based polymer blend and different thiol-capped metal nanoparticles were prepared using ex situ synthesis and electrospinning technique. The effects of the nanoparticle composition and chemical structure on the electrical properties of the nanocomposites were investigated. This study confirmed that Brust's procedure is an effective method for the synthesis of sub-10 nm silver, gold, and silver-gold alloy nanoparticles protected with different types of thiols. Electron microscopy results demonstrated that electrospinning is a valuable technique for the production of composite nanofibers with similar morphology and revealed that nanofillers are well-dispersed into the polymer matrix. X-ray diffraction tests proved the lack of a significant influence of the nanoparticle chemical structure on the polyaniline chain arrangement. However, the introduction of conductive nanofillers in the polymer matrix influences the charge transport noticeably improving electrical conductivity. The enhancement of electrical properties is mediated by the nanoparticle capping layer structure. The metal nanoparticle core composition is a key parameter, which exerted a significant influence on the conductivity of the nanocomposites. These results prove that the proposed method can be used to tune the electrical properties of nanocomposites.

Affiliations:
Pierini F. - IPPT PAN
Lanzi M. - University of Bologna (IT)
Nakielski P. - IPPT PAN
Kowalewski T.A. - IPPT PAN
12.  Pierini F., Lanzi M., Nakielski P., Pawłowska S., Zembrzycki K., Kowalewski T.A., Electrospun poly(3-hexylthiophene)/poly(ethylene oxide)/graphene oxide composite nanofibers: effects of graphene oxide reduction, Polymers for Advanced Technologies, ISSN: 1042-7147, DOI: 10.1002/pat.3816, Vol.27, No.11, pp.1465-1475, 2016

Abstract:
In this article, we report on the production by electrospinning of P3HT/PEO, P3HT/PEO/GO, and P3HT/PEO/rGO nanofibers in which the filler is homogeneously dispersed and parallel oriented along the fibers axis. The effect of nanofillers' presence inside nanofibers and GO reduction was studied, in order to reveal the influence of the new hierarchical structure on the electrical conductivity and mechanical properties. An in-depth characterization of the purity and regioregularity of the starting P3HT as well as the morphology and chemical structure of GO and rGO was carried out. The morphology of the electrospun nanofibers was examined by both scanning and transmission electron microscopy. The fibrous nanocomposites are also characterized by differential scanning calorimetry to investigate their chemical structure and polymer chains arrangements. Finally, the electrical conductivity of the electrospun fibers and the elastic modulus of the single fibers are evaluated using a four-point probe method and atomic force microscopy nanoindentation, respectively. The electrospun materials crystallinity as well as the elastic modulus increase with the addition of the nanofillers while the electrical conductivity is positively influenced by the GO reduction.

Keywords:
electrospun composite nanofibers, poly(3-hexylthiophene), graphene oxide, electrical conductivity, mechanical properties

Affiliations:
Pierini F. - IPPT PAN
Lanzi M. - University of Bologna (IT)
Nakielski P. - IPPT PAN
Pawłowska S. - IPPT PAN
Zembrzycki K. - IPPT PAN
Kowalewski T.A. - IPPT PAN
13.  Pierini F., Lanzi M., Lesci I.G., Roveri N., Comparison between Inorganic Geomimetic Chrysotile and Multiwalled Carbon Nanotubes in the Preparation of One-dimensional Conducting Polymer Nanocomposites, Fibers and Polymers, ISSN: 1229-9197, DOI: 10.1007/s12221-015-0426-x, Vol.16, No.2, pp.426-433, 2015

Abstract:
The aim of this study was to examine the role of the nanofillers spatial arrangement in the electrical properties of hybrid organic-inorganic fibers. In this paper, we have presented experimental results for preparation of fibers with a nanometric diameter based on a polyaniline/poly(ethylene oxide) doped blend and geomimetic chrysotile nanotubes. The nanostructured material was prepared using electrospinning techniques. Electrospun fibers made by pristine polymers and by the same blend loaded with carbon nanotubes were used as reference materials to compare the structural, and electrical properties of the novel organic-inorganic material. Generally, electrical properties were improved by the addition of materials that have high conductivity. Electrospun fibers filled with a traditional insulator like chrysotile have shown higher electrical conductivity than the pristine materials. In order to fully understand how structural variations impact upon the electrical conductivity the materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), differential scanning calorimetry (DSC) and four-point probe method. The results suggest that the occurred electrical conductivity gain could be attributed to parallel orientation of the chrysotile nanotubes and higher crystallinity induced by the one-dimensional nanostructured filler materials. The obtained results bring us one step closer to using intrinsically conducting polymers (ICPs) in the creation of functionalized polymeric nanocomposites for nanotechnology.

Keywords:
Nanocomposites, Conductive polymer, Electrospinning, Chrysotile, Carbon nanotubes

Affiliations:
Pierini F. - IPPT PAN
Lanzi M. - University of Bologna (IT)
Lesci I.G. - University of Bologna (IT)
Roveri N. - University of Bologna (IT)
14.  Lanzi M., Paganin L., Pierini F., Errani F., Di-Nicola F.P., Use of poly(3-methylthio)thiophene blends for direct laser tracing and bulck heterojunction solar cells, REACTIVE AND FUNCTIONAL POLYMERS, ISSN: 1381-5148, DOI: 10.1016/j.reactfunctpolym.2014.07.007, Vol.83, pp.33-41, 2014

Abstract:
In this article we demonstrate the use of a blend made of two regioregular polythiophenic derivatives, namely poly(3-methylthio)thiophene and poly(3-hexyl)thiophene, to obtain conductive traces by the simple laser exposure of their thin films to a suitable laser source. The polymeric blend was also tested as a photoactive layer for BHJ solar cells, showing an improved surface morphology and a wider absorption spectrum, thus resulting in an enhanced photovoltaic performance. In the standard condition normally used for the cell preparation, we obtained a 3.16% power conversion efficiency. The device showed good reproducibility and stability over time.

Keywords:
Electrical conductivity, Laser tracing, Bulk heterojunction polymeric solar cells, Regioregular polyalkylthiophenes, Polymer blends

Affiliations:
Lanzi M. - University of Bologna (IT)
Paganin L. - University of Bologna (IT)
Pierini F. - other affiliation
Errani F. - University of Bologna (IT)
Di-Nicola F.P. - University of Bologna (IT)
15.  Lanzi M., Di-Nicola F.P., Livi M., Paganin L., Cappelli F., Pierini F., Synthesis and characterization of conjugated polymers for the obtainment of conductive patterns through laser tracing, JOURNAL OF MATERIALS SCIENCE, ISSN: 0022-2461, DOI: 10.1007/s10853-013-7204-1, Vol.48, pp.3877-3893, 2013

Abstract:
This article describes the preparation of thin films of conjugated polymers which can enhance their specific electrical conductivity by several orders of magnitude by changing their state from insulating to conducting materials. The examined polymers, i.e., a polyacetylenic and a polythiophenic derivative, are functionalized with thioalkylic side chains and are soluble in common organic solvents from which they lead to thick homogeneous films. The films can be deposited on different substrates, either rigid or flexible, and can be easily exposed to laser radiation to make them conductive. The process is irreversible, and the final conductivity is stable over time, even in the presence of high temperatures (up to 180°C), moisture, and air. The high stability of treated samples, easy polymer synthesis and quick and inexpensive suitably tailored laser tracing procedure make these materials very promising for applications in organic electronics and in the development of new electronic circuitry.

Affiliations:
Lanzi M. - University of Bologna (IT)
Di-Nicola F.P. - University of Bologna (IT)
Livi M. - University of Bologna (IT)
Paganin L. - University of Bologna (IT)
Cappelli F. - Stem S.a.s. (IT)
Pierini F. - other affiliation

Conference abstracts
1.  Pierini F., Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., Urbanek-Świderska O., De Sio L., Calogero A., Lanzi M., Zembrzycki K., Pruchniewski M., Salatelli E., Kowalewski T.A., Yarin A., Nature-inspired smart drug delivery platforms based on electrospun nanofibers and plasmonic hydrogels for near-infrared light-controlled polytherapy, Polymer Connect, Polymer Science and Composite Materials Conference, 2020-02-26/02-28, LISBON (PT), pp.7, 2020
2.  Pierini F., Lanzi M., Nakielski P., Pawłowska S., Urbanek O., Kowalewski T.A., Light-matter interaction in electrospun nanofibers: novel conjugated polymer-based one-dimensional nanostructures for organic solar cell applications, NOMA2019, The 14th Mediterranean Workshop and Topical Meeting, 2019-06-02/06-08, Cetraro (IT), pp.55-55, 2019

Abstract:
Single-material organic solar cells (SMOCs) based on fullerene-grafted polythiophenes are considered promising devices for organic solar cells (OSCs). The main efforts in this field focus on the chemical tailoring of polymer molecules to reduce the side effects of charge recombination. These advances have made it possible to obtain a power conversion efficiency (PCE) close to conventional bulk heterojunction (BHJ) cells. So far, however, SMOCs still show inadequate efficiencies due to ineffective charge transport. Here we show how SMOC efficiency can be strongly increased by optimizing the supramolecular and nanoscale structure of the active layer, while achieving the highest reported efficiency value (PCE = 5.58%) [1]. The enhanced performance may be attributed to well-packed and properly oriented polymer chains. The hierarchical structure is given by the incorporation of electrospun one-dimensional nanostructures obtained from polymer chain stretching. Our results suggest that the active material optimization obtained by the use of electrospun nanofibers plays a key role in the development of efficient SMOCs.

Affiliations:
Pierini F. - IPPT PAN
Lanzi M. - University of Bologna (IT)
Nakielski P. - IPPT PAN
Pawłowska S. - IPPT PAN
Urbanek O. - IPPT PAN
Kowalewski T.A. - IPPT PAN
3.  Pierini F., Lanzi M., Nakielski P., Pawłowska S., Urbanek O., Kowalewski T.A., Electrospinning of polythiophene with pendant fullerene nanofibers for single-material organic solar cells, Electrospin2018 International Conference, 2018-01-16/01-18, Stellenbosch (ZA), pp.19-20, 2018

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2021