Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Maksymilian Schmidt

Institute of Electronic Materials Technology (PL)

Recent publications
1.  Zybała R., Mars K., Mikuła A., Bogusławski J., Soboń G., Sotor J., Schmidt M., Kaszyca K., Chmielewski M., Ciupiński L., Pietrzak K., Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0155, Vol.62, No.2B, pp.1067-1070, 2017

Abstract:
Antimony telluride (Sb2Te3) is an intermetallic compound crystallizing in a hexagonal lattice with R-3m space group. It creates a c lose packed structure of an ABCABC type. As intrinsic semiconductor characterized by excellent electrical properties, Sb2Te3 is widely used as a low-temperature thermoelectric material. At the same time, due to unusual properties (strictly connected with the structure), antimony telluride exhibits nonlinear optical properties, including saturable absorption. Nanostructurization, elemental doping and possibilities of synthesis Sb2Te3 in various forms (polycrystalline, single crystal or thin film) are the most promising methods for improving thermoelectric properties of Sb2Te3.Applications of Sb2Te3 in optical devices (e.g. nonlinear modulator, in particular saturable absorbers for ultrafast lasers) are also interesting. The antimony telluride in form of bulk polycrystals and layers for thermoelectric and optoelectronic applications respectively were used. For optical applications thin layers of the material were formed and studied. Synthesis and structural characterization of Sb2Te3 were also presented here. The anisotropy (packed structure) and its influence on thermoelectric properties have been performed. Furthermore, preparation and characterization of Sb2Te3 thin films for optical uses have been also made

Keywords:
antimony telluride, thermoelectric materials, thin films, PVD magnetron sputtering, topological insulator

Affiliations:
Zybała R. - Warsaw University of Technology (PL)
Mars K. - AGH University of Science and Technology (PL)
Mikuła A. - AGH University of Science and Technology (PL)
Bogusławski J. - Wroclaw University of Science and Technology (PL)
Soboń G. - Wroclaw University of Science and Technology (PL)
Sotor J. - Wroclaw University of Science and Technology (PL)
Schmidt M. - Institute of Electronic Materials Technology (PL)
Kaszyca K. - Lukasiewicz Institute of Microelectronics and Photonics (PL)
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Ciupiński L. - Warsaw University of Technology (PL)
Pietrzak K. - other affiliation
2.  Zybała R., Schmidt M., Kaszyca K., Ciupiński Ł., Kruszewski M.J., Pietrzak K., Method and Apparatus for Determining Operational Parameters of Thermoelectric Modules, Journal of Electronic Materials, ISSN: 0361-5235, DOI: 10.1007/s11664-016-4712-1, Vol.45, No.10, pp.5223-5231, 2016

Abstract:
The main aim of this work was to construct and test an apparatus for characterization of high temperature thermoelectric modules to be used in thermoelectric generator (TEGs) applications. The idea of this apparatus is based on very precise measurements of heat fluxes passing through the thermoelectric (TE) module, at both its hot and cold sides. The electrical properties of the module, under different temperature and load conditions, were used to estimate efficiency of energy conversion based on electrical and thermal energy conservation analysis. The temperature of the cold side, Tc, was stabilized by a precise circulating thermostat (≤0.1°C) in a temperature range from 5°C to 90°C. The amount of heat absorbed by a coolant flowing through the heat sink was measured by the calibrated and certified heat flow meter with an accuracy better than 1%. The temperature of the hot side, Th, was forced to assumed temperature (Tmax = 450°C) by an electric heater with known power (Ph = 0–600 W) with ample thermal insulation. The electrical power was used in calculations. The TE module, heaters and cooling plate were placed in an adiabatic vacuum chamber. The load characteristics of the module were evaluated using an electronically controlled current source as a load. The apparatus may be used to determine the essential parameters of TE modules (open circuit voltage, Uoc, short circuit current, Isc, internal electrical resistance, Rint, thermal resistance, Rth, power density, and efficiency, η, as a function of Tc and Th). Several commercially available TE modules based on Bi2Te3 and Sb2Te3 alloys were tested. The measurements confirmed that the constructed apparatus was highly accurate, stable and yielded reproducible results; therefore, it is a reliable tool for the development of thermoelectric generators.

Keywords:
energy conversion efficiency, power generation, thermoelectric modules, performance characterization, heat recovery, renewable energy

Affiliations:
Zybała R. - Warsaw University of Technology (PL)
Schmidt M. - Institute of Electronic Materials Technology (PL)
Kaszyca K. - Lukasiewicz Institute of Microelectronics and Photonics (PL)
Ciupiński Ł. - Warsaw University of Technology (PL)
Kruszewski M.J. - other affiliation
Pietrzak K. - other affiliation
3.  Wierzbicki R., Kobler C., Jensen M.R.B., Łopacińska J., Schmidt M.S., Skolimowski M., Abeille F., Qvortrup K., Molhave K., Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM, PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0053307, Vol.8, No.1, pp.e53307-1-12, 2013

Abstract:
Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells’ interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered.

Keywords:
Nanowires, Thin films, Glass, Scanning electron microscopy, Transmission electron microscopy, Cell membranes, Fibroblasts, Nanomaterials

Affiliations:
Wierzbicki R. - other affiliation
Kobler C. - Technical University of Denmark (DK)
Jensen M.R.B. - Technical University of Denmark (DK)
Łopacińska J. - other affiliation
Schmidt M.S. - Institute of Electronic Materials Technology (PL)
Skolimowski M. - other affiliation
Abeille F. - Technical University of Denmark (DK)
Qvortrup K. - University of Copenhagen (DK)
Molhave K. - Technical University of Denmark (DK)
4.  Wierzbicki R., Schmidt M.S., Boisen A., Engstrom D., Molhave K., Boggild P., Black silicon maskless templates for carbon nanotube forests, MICROELECTRONIC ENGINEERING, ISSN: 0167-9317, DOI: 10.1016/j.mee.2012.11.019, Vol.104, pp.110-113, 2013

Abstract:
We present here a proof of concept for a novel fabrication method of vertically aligned carbon nanotube forests, utilizing black silicon nanograss (a forest of silicon nanometer-sized spikes created with reactive ion etching) coated with titanium tungsten diffusion barrier as a template. The method allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests grown on the nanograss substrates is presented with discussion of their morphology, diameter distribution, and catalyst thickness influence.

Keywords:
Carbon nanotubes, Black silicon, Nanograss, Maskless, Catalyst, Titanium tungsten

Affiliations:
Wierzbicki R. - other affiliation
Schmidt M.S. - Institute of Electronic Materials Technology (PL)
Boisen A. - DTU Nanotech (DK)
Engstrom D. - Isfahan University of Technology (IR)
Molhave K. - Technical University of Denmark (DK)
Boggild P. - DTU Nanotech (DK)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024