Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Guofu Zhou

South China Normal University (CN)

Ostatnie publikacje
1.  Zhang Y., Nwaji N., Wu L., Jin m., Zhou G., Giersig M., Wang X., Qiu T., Akinoglu E.M., MAPbBr3/Bi2WO6 Z-scheme-Heterojunction Photocatalysts for photocatalytic CO2 reduction, JOURNAL OF MATERIALS SCIENCE, ISSN: 0022-2461, DOI: 10.1007/s10853-023-09220-w, Vol.59, pp.Journal of Material Science-1498-1512, 2024

Streszczenie:
Photocatalytic CO2 reduction has emerged as a promising strategy for converting solar energy into valuable chemicals, capturing the attention of scientists across various disciplines. Organic and inorganic perovskites, particularly methylammonium lead bromide (MAPbBr3), have demonstrated potential in this field due to their remarkable visible-light response and carrier transport properties. However, the catalytic performance of pristine MAPbBr3 has been limited by severe charge recombination, hindering its applicability in photocatalytic systems. Here, we show that a MAPbBr3/Bi2WO6 (MA/BWO) heterojunction significantly enhances photocatalytic CO2 reduction performance compared to individual pristine MA or BWO. This enhancement is evidenced by the superior performance of the 25% MA/BWO composite, which exhibits CO and CH4 release rates of 1.82 μmol/g/h and 0.08 μmol/g/h, respectively. This improvement is attributed to the direct Z-scheme heterojunction formed between MAPbBr3 and Bi2WO6, which facilitates efficient charge separation and suppresses charge recombination. The results challenge the previous understanding of MAPbBr3-based photocatalysts and demonstrate a novel approach for developing highly active organic and inorganic perovskite photocatalysts. The successful application of the MA/BWO heterojunction in photocatalytic CO2 reduction expands the scope of organic and inorganic perovskites in the field of renewable energy conversion. By providing a broader perspective, our findings contribute to the ongoing efforts towards sustainable energy solutions, appealing

Afiliacje autorów:
Zhang Y. - University of Notre Dame (US)
Nwaji N. - inna afiliacja
Wu L. - inna afiliacja
Jin m. - South China Normal University (CN)
Zhou G. - South China Normal University (CN)
Giersig M. - IPPT PAN
Wang X. - inna afiliacja
Qiu T. - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
100p.
2.  Li C., Qiu T., Li C., Cheng B., Jin M., Zhou G., Giersig M., Wang X., Gao J., Akinoglu E.M., Highly Flexible and Acid−Alkali Resistant TiN Nanomesh Transparent Electrodes for Next-Generation Optoelectronic Devices, ACS Nano, ISSN: 1936-0851, DOI: 10.1021/acsnano.3c05211 , pp.1-10, 2023

Streszczenie:
ransparent electrodes are vital for optoelectronic
devices, but their development has been constrained by the limitations of existing materials such as indium tin oxide (ITO) and newer alternatives. All face issues of robustness, flexibility,conductivity, and stability in harsh environments. Addressing this challenge, we developed a flexible, low-cost titanium nitride (TiN)
nanomesh transparent electrode showcasing exceptional acid−alkali resistance. The TiN nanomesh electrode, created by depositing a TiN coating on a naturally cracked gel film substrate via a sputtering method, maintains a stable electrical performance through
thousands of bending cycles. It exhibits outstanding chemical
stability, resisting strong acid and alkali corrosion, which is a key hurdle for current electrodes when in contact with acidic/alkaline materials and solvents during device fabrication. This, coupled with superior light transmission and conductivity (88% at 550 nm with a sheet resistance of ∼200 Ω/sq), challenges the reliance on conventional materials. Our TiN nanomesh electrode,successfully applied in electric heaters and electrically controlled thermochromic devices, offers broad potential beyond harsh environment applications. It enables alternative possibilities for the design and fabrication of future optoelectronics for advancements in this pivotal field.

Słowa kluczowe:
transparent electrode, titanium nitride, flexible, corrosion resistant, mesh, smart window

Afiliacje autorów:
Li C. - inna afiliacja
Qiu T. - inna afiliacja
Li C. - inna afiliacja
Cheng B. - inna afiliacja
Jin M. - South China Normal University (CN)
Zhou G. - South China Normal University (CN)
Giersig M. - IPPT PAN
Wang X. - inna afiliacja
Gao J. - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
200p.
3.  Cheng B., Qiu T., Jin M., Zhou G., Giersig M., Wang X., Akinoglu E.M., Spreading Solution Additives Governs the Quality of Polystyrene Particle-Based Two-Dimensional Opals, LANGMUIR, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.3c00418, Vol.39, pp.8996-9006, 2023

Streszczenie:
wo-dimensional polystyrene sphere opals are important materials for nanotechnology applications and funda-
mental nanoscience research. They are a facile and inexpensive nanofabrication tool, but the quality factor of these opals has drastic differences between reports. Additives like ethanol, ions, and organic molecules in the aqueous particle spreading solution are known to affect the quality factor and growth efficiency of the
produced opals. However, a systematic study on the effect and optimization of some of the most effective additives has not been reported until now. Here, we investigate the influence of additives on the growth efficiency and quality factor of such monolayers formed at the air−water interface without the use of a Langmuir−Blodgett trough. The additives induced large variations in the monolayer quality factor and growth efficiency, and we found that the ideal additive content of the spreading agents is 30 wt % < cethanol < 70 wt %, 0 < cHd 2SOd 4 < 30.5 mM, and 0 < csty < 255.0 mM. This study provides a guideline for the rational composition and additive content of the spreading solution to obtain high-quality two-dimensional opals for further applications in nanofabrication and photonics and will enable researchers and application engineers to produce standardized nanofabrication materials.

Afiliacje autorów:
Cheng B. - inna afiliacja
Qiu T. - inna afiliacja
Jin M. - South China Normal University (CN)
Zhou G. - South China Normal University (CN)
Giersig M. - IPPT PAN
Wang X. - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
100p.
4.  Li C., Qiu T., Zhou G., Giersig M., Wang X., Akinoglu E.M., Oxygen plasma induced solvent resistance of polystyrene particles enables the fabrication of ultra-thin free-standing crosslinked polymer films, Surfaces and Interfaces, ISSN: 2468-0230, DOI: 10.1016/j.surfin.2023.103164, Vol.41, No.103164, pp.1-9, 2023

Streszczenie:
Plasma-treated polystyrene particles (PSP) are key building blocks in the fabrication of two- dimensional
nanostructure arrays. Oxygen plasma etching can shrink PS particles and is a widespread tool in fundamental
research and applications, but its effect has not been well understood. Here, we show that oxygen plasma induces
an ultra-thin cross-linking layer on the surface of the PSPs, which increases their solvent resistance. We found in
X-ray photoelectron spectroscopy (XPS) fine structure and valence band probing that the polymer C–C bonds are breaking and ecombining to form oxygenated functional groups. Our results explain, why oxygen plasma etched PS particles are more difficult to dissolve in nanofabrication procedures. Further, we used the ultra-thin crosslinked polymer layer to construct novel substrate-base microcavity arrays.

Słowa kluczowe:
Polystyrene particle, Oxygen plasma, Cross-linking

Afiliacje autorów:
Li C. - inna afiliacja
Qiu T. - inna afiliacja
Zhou G. - South China Normal University (CN)
Giersig M. - IPPT PAN
Wang X. - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
70p.
5.  Yang H., Akinoglu E.M., Lisi F., Wu L., Shen S., Jin M., Zhou G., Giersig M., Shui L., Mulvaney Paul ., A versatile strategy for loading silica particles with dyes and quantum dots, Colloid and Interface Science Communications, ISSN: 2215-0382, DOI: 10.1016/j.colcom.2022.100594, Vol.47, No.100594, pp.1-9, 2022

Streszczenie:
A simple and inexpensive method for the controlled loading of silica particles with dyes and nanocrystals is presented. Polydiallyldimethylammonium chloride is used as a positively charged bridge to facilitate electrostatic adsorption of negatively charged dyes onto negatively charged silica microspheres. The particles are subsequently coated with a further silica shell to protect the dyes against chemical degradation and leakage and this shell affords a unform particle surface independent of its doping. This encapsulation method is highly versatile and can be extended to doping with semiconductor nanocrystals, which we demonstrate using CdSe/ZnS core/shell quantum dots. The synthesis steps and end products are characterized with electron microscopy, optical spectroscopy and the electrokinetic potential of the colloidal suspensions. We show that the particles adapt the optical properties of their dopants and are resistant to degradation, dopant leakage and show reasonable emission even at acidic pH values due to the protective shell.

Słowa kluczowe:
Silica particles, Dye, Quantum dot, Polydiallyldimethylammonium chloride, Doping

Afiliacje autorów:
Yang H. - South China Normal University (CN)
Akinoglu E.M. - University of Melbourne (AU)
Lisi F. - inna afiliacja
Wu L. - inna afiliacja
Shen S. - inna afiliacja
Jin M. - South China Normal University (CN)
Zhou G. - South China Normal University (CN)
Giersig M. - IPPT PAN
Shui L. - South China Normal University (CN)
Mulvaney Paul . - University of Melbourne (AU)
70p.
6.  Chen R., Xue Yafei ., Xu X., Yang H., Qiu T., Shui Lingling ., Wang Xin ., Zhou G., Giersig M., Pidot S., Hutchison J.A ., Akinoglu E.M., Lithography-free synthesis of periodic, vertically-aligned, multi-walled carbon nanotube arrays, NANOTECHNOLOGY, ISSN: 0957-4484, DOI: 10.1088/1361-6528/ac345a, Vol.33, No.065304 , pp.1-9, 2021

Streszczenie:
Until now, the growth of periodic vertically aligned multi-walled carbon nanotube (VA-
MWCNT) arrays was dependent on at least one lithography step during fabrication. Here, we demonstrate a lithography-free fabrication method to grow hexagonal arrays of self-standing VA-MWCNTs with tunable pitch and MWCNT size. The MWCNTs are synthesized by plasma enhanced chemical vapor deposition (PECVD) from Ni catalyst particles. Template guided dewetting of a thin Ni film on a hexagonally close-packed silica particle monolayer provides periodically distributed Ni catalyst particles as seeds for the growth of the periodic MWCNT arrays. The diameter of the silica particles directly controls the pitch of the periodic VA-MWCNT arrays from 600 nm to as small as 160 nm. The diameter and length of the individual MWCNTs can also be readily adjusted and are a function of the Ni particle size and PECVD time. This unique method of lithography-free growth of periodic VA-MWCNT arrays can be utilized for the fabrication of large-scale biomimetic materials

Słowa kluczowe:
periodic, ithography free, nanofabrication, template guided, vertically-aligned multi- walled carbon nanotubes, self-standing

Afiliacje autorów:
Chen R. - inna afiliacja
Xue Yafei . - South China Normal University (CN)
Xu X. - inna afiliacja
Yang H. - South China Normal University (CN)
Qiu T. - inna afiliacja
Shui Lingling . - South China Normal University (CN)
Wang Xin . - inna afiliacja
Zhou G. - South China Normal University (CN)
Giersig M. - IPPT PAN
Pidot S. - inna afiliacja
Hutchison J.A . - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
100p.
7.  Gabriele V.R., Mazhabi R.M., Alexander N., Mukherjee P., Seyfried T.N., Nwaji N., Akinoglu E.M., Mackiewicz A., Zhou G., Giersig M., Naughton M.J., Kempa K., Light- and melanin nanoparticle-induced cytotoxicity in metastatic cancer cells, Pharmaceutics, ISSN: 1999-4923, DOI: 10.3390/pharmaceutics13070965, Vol.13, No.7, pp.965-1-14, 2021

Streszczenie:
Melanin nanoparticles are known to be biologically benign to human cells for a wide range of concentrations in a high glucose culture nutrition. Here, we show cytotoxic behavior at high nanoparticle and low glucose concentrations, as well as at low nanoparticle concentration under exposure to (nonionizing) visible radiation. To study these effects in detail, we developed highly monodispersed melanin nanoparticles (both uncoated and glucose-coated). In order to study the effect of significant cellular uptake of these nanoparticles, we employed three cancer cell lines: VM-M3, A375 (derived from melanoma), and HeLa, all known to exhibit strong macrophagic character, i.e., strong nanoparticle uptake through phagocytic ingestion. Our main observations are: (i) metastatic VM-M3 cancer cells massively ingest melanin nanoparticles (mNPs); (ii) the observed ingestion is enhanced by coating mNPs with glucose; (iii) after a certain level of mNP ingestion, the metastatic cancer cells studied here are observed to die—glucose coating appears to slow that process; (iv) cells that accumulate mNPs are much more susceptible to killing by laser illumination than cells that do not accumulate mNPs; and (v) non-metastatic VM-NM1 cancer cells also studied in this work do not ingest the mNPs, and remain unaffected after receiving identical optical energy levels and doses. Results of this study could lead to the development of a therapy for control of metastatic stages of cancer.

Słowa kluczowe:
melanoma, melanin nanoparticles, cytotoxicity, laser medical applications, hyperthermia

Afiliacje autorów:
Gabriele V.R. - inna afiliacja
Mazhabi R.M. - South China Normal University (CN)
Alexander N. - inna afiliacja
Mukherjee P. - inna afiliacja
Seyfried T.N. - inna afiliacja
Nwaji N. - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
Mackiewicz A. - inna afiliacja
Zhou G. - South China Normal University (CN)
Giersig M. - IPPT PAN
Naughton M.J. - inna afiliacja
Kempa K. - inna afiliacja
100p.
8.  Yang H., Akinoglu E.M., Guo L., Jin M., Zhou G., Giersig M., Shui L., Mulvaney P., A PTFE helical capillary microreactor for the high throughput synthesis of monodisperse silica particles, Chemical Engineering Journal, ISSN: 1385-8947, DOI: 10.1016/j.cej.2020.126063, Vol.401, pp.126063-1-29, 2020

Streszczenie:
We propose a simple and inexpensive SiO2 submicron particle synthesis method based on a PTFE helical capillary microreactor. The device is based on Dean flow mediated, ultrafast mixing of two liquid phases in a microfluidic spiral pipe. Excellent control of particle size between 100 nm and 600 nm and narrow polydispersity can be achieved by controlling the device and process parameters. Numerical simulations are performed to determine the optimal device dimensions. In the mother liquor the silica particles exhibit zeta potentials < -60 mV, rendering them very stable even at high particle volume fractions. The current device typically produces around 0.234 g/h of the silica particles.

Słowa kluczowe:
SiO2 particle synthesis, continuous flow synthesis, helical capillary microreactor

Afiliacje autorów:
Yang H. - South China Normal University (CN)
Akinoglu E.M. - University of Melbourne (AU)
Guo L. - South China Normal University (CN)
Jin M. - South China Normal University (CN)
Zhou G. - South China Normal University (CN)
Giersig M. - IPPT PAN
Shui L. - South China Normal University (CN)
Mulvaney P. - University of Melbourne (AU)
200p.
9.  Akinoglu E.M., Luo L., Dodge T., Guo L., Akinoglu G.E., Wang X., Shui L., Zhou G., Naughton M.J., Kempa K., Giersig M., Extraordinary optical transmission in nano-bridged plasmonic arrays mimicking a stable weakly-connected percolation threshold, OPTICS EXPRESS, ISSN: 1094-4087, DOI: 10.1364/OE.403034, Vol.28, No.21, pp.31425-31435, 2020

Streszczenie:
Ultrasensitive sensors of various physical properties can be based on percolation systems, e.g., insulating media filled with nearly touching conducting particles. Such a system at its percolation threshold featuring the critical particle concentration, changes drastically its response (electrical conduction, light transmission, etc.) when subjected to an external stimulus. Due to the critical nature of this threshold, a given state at the threshold is typically very unstable. However, stability can be restored without significantly sacrificing the structure sensitivity by forming weak connections between the conducting particles. In this work, we employed nano-bridged nanosphere lithography to produce such a weakly connected percolation system. It consists of two coupled quasi-Babinet complementary arrays, one with weakly connected, and the other with disconnected metallic islands. We demonstrate via experiment and simulation that the physics of this plasmonic system is non-trivial, and leads to the extraordinary optical transmission at narrowly defined peaks sensitive to system parameters, with surface plasmons mediating this process. Thus, our system is a potential candidate for percolation effect based sensor applications. Promising detection schemes could be based on these effects.

Afiliacje autorów:
Akinoglu E.M. - University of Melbourne (AU)
Luo L. - inna afiliacja
Dodge T. - inna afiliacja
Guo L. - South China Normal University (CN)
Akinoglu G.E. - inna afiliacja
Wang X. - inna afiliacja
Shui L. - South China Normal University (CN)
Zhou G. - South China Normal University (CN)
Naughton M.J. - inna afiliacja
Kempa K. - inna afiliacja
Giersig M. - IPPT PAN
140p.
10.  Luo L., Akinoglu E.M., Wu W., Dodge T., Wang X., Zhou G., Naughton M.J., Kempa K., Giersig M., Nano-bridged nanosphere lithography, NANOTECHNOLOGY, ISSN: 0957-4484, DOI: 10.1088/1361-6528/ab7c4c, Vol.31, pp.245302-1-6, 2020

Streszczenie:
We develop nano-bridged nanosphere lithography (NB-NSL), a modification to the widely used conventional nanosphere lithography (NSL). Nano-bridges between polystyrene (PS) spheres of a pristine NSL template are controllably formed in a two-step process: (i) spin-coating of a dilute styrene solution on top of the template, followed by (ii) oxygen plasma etching of the template. We show that the nanobridge dimensions can be precisely tuned by controlling the pre-processing conditions and the plasma etching time. The resulting lithography templates feature control over the shape and size of the apertures, which determine the morphology of the final nano-island arrays after material deposition and template removal. The unique advantage of NB-NSL is that PS particle templates based on a single PS particle diameter can be utilized for the fabrication of a variation of nano-island shapes and sizes, whereas conventional NSL yields only bowtie-shaped nano-islands, with their size being predetermined by the PS particle diameter of the template.

Słowa kluczowe:
nanofabrication, nanosphere lithography, colloid lithography

Afiliacje autorów:
Luo L. - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
Wu W. - inna afiliacja
Dodge T. - inna afiliacja
Wang X. - inna afiliacja
Zhou G. - South China Normal University (CN)
Naughton M.J. - inna afiliacja
Kempa K. - inna afiliacja
Giersig M. - IPPT PAN
100p.
11.  Feng K., Akinoglu E.M., Bozheyev F., Guo L., Jin M., Wang X., Zhou G., Naughton M.J., Giersig M., Magnetron sputtered copper bismuth oxide photocathodes for solar water reduction, JOURNAL OF PHYSICS D-APPLIED PHYSICS, ISSN: 0022-3727, DOI: 10.1088/1361-6463/abaf25, Vol.53, pp.495501-1-11, 2020

Streszczenie:
There is an urgent need for new materials that can catalyze or drive the photoelectrochemical (PEC) conversion of solar energy into chemical energy, i.e. solar fuels. Copper bismuth oxide (CBO) is a promising photocathode material for the photochemical reduction of water. Here, we systematically control the stoichiometry of CBO thin films prepared by reactive, direct-current magnetron co-sputtering from metallic Bi and Cu targets. The intrinsic photophysical and PEC material properties are investigated and evaluated in order to determine the optimum composition for hydrogen formation. Changing the stoichiometry of the films reveals a dramatic change in the optical band gap and crystal structure of CBO. The largest photocurrent density was achieved for a copper-to-bismuth ion ratio of 0.53, close to the CuBi2O4 stoichiometry, which yielded Jph = − 0.48 mA cm^−2 at 0 VRHE (RHE = reversible hydrogen electrode). This is the highest value to date for the photochemical reduction of water with CuBi2O4 without an externally applied bias. The absorbed photon-to-current efficiency and the photostability of the films in neutral and alkaline electrolytes were also investigated.

Słowa kluczowe:
CuBi2O4, copper bismuth oxide, water reduction, water splitting, photocathode, magnetron sputtering

Afiliacje autorów:
Feng K. - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
Bozheyev F. - inna afiliacja
Guo L. - South China Normal University (CN)
Jin M. - South China Normal University (CN)
Wang X. - inna afiliacja
Zhou G. - South China Normal University (CN)
Naughton M.J. - inna afiliacja
Giersig M. - IPPT PAN
70p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024