Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Gwak Juyong


Ostatnie publikacje
1.  Nwaji N., Hyojin K., Mahendra G., Lemma Teshome T., Juyong G., Abhishek S., Nirpendra S., Jaebeom L., Sulfur vacancy induced Co3S4@CoMo2S4 nanocomposite as functional electrode for high performance supercapacitor, Journal of Materials Chemistry A, ISSN: 2050-7488, DOI: 10.1039/d2ta08820g, Vol.11, pp.Journal of Material Chemistry A-3640-3652, 2024

Streszczenie:
Vacancy engineering offers an attractive approach to improving the surface properties and electronic
structure of transition metal nanomaterials. However, simple and cost-effective methods for introducing
defects into nanomaterials still face great challenges. Herein, we propose a facile room temperature
two-step technique that utilizes Fe as the dopant to enhance S vacancies in cobalt-based metal–organic
frameworks (MOFs). The Fe–Co-MOF was converted into a hollow Fe–Co3S4 confined in CoMo2S4 to
form Fe–Co3S4@CoMo2S4 nanosheets. The as-prepared material showed enhanced charge storage
kinetics and excellent properties as an electrode material for supercapacitors. The obtained
nanostructure displayed a high specific capacitance (980.3 F g−1 at 1 A g−1) and excellent cycling stability
(capacity retention of 96.5% after 6000 cycles at 10 A g−1). Density functional theory (DFT) calculations
show that introducing defects into the nanostructures leads to more electrons appearing near the Fermi
level, which is beneficial for electron transfer during electrochemical processes. Thus, this work provides
a rational cost-effective strategy for introducing defects into transition metal sulfides and may serve as
a potential means to prepare electrode materials for energy storage.

Afiliacje autorów:
Nwaji N. - inna afiliacja
Hyojin K. - inna afiliacja
Mahendra G. - inna afiliacja
Lemma Teshome T. - inna afiliacja
Juyong G. - inna afiliacja
Abhishek S. - inna afiliacja
Nirpendra S. - inna afiliacja
Jaebeom L. - Lexington High School (US)
200p.
2.  Nwaji N., Juyong G., Mahendra G., Hyojin K., Adewale Hammed P., Abhishek S., Nirpendra S., Jaebeom L., Defect engineered Fe3C@NiCo2S4 trojan nanospike derived from Metal Organic framework as Advanced electrode material for Hybrid supercapacitor., ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c04635, Vol.15, No.29, pp.ACS Applied Material Interfaces-34779–34788, 2024

Streszczenie:
The rational synthesis and tailoring of metal-organic frameworks (MOFs) with multifunctional micro/nanoarchitectures have emerged as a subject of significant academic interest owing to their promising potential for utilization in advanced energy storage devices. Herein, we explored a category of three-dimensional (3D) NiCo2S4 nanospikes that have been integrated into a 1D Fe3C microarchitecture using a chemical surface transformation process. The resulting electrode materials, i.e., Fe3C@NiCo2S4 nanospikes, exhibit immense potential for utilization in high-performance hybrid supercapacitors. The nanospikes exhibit an elevated specific capacity (1894.2 F g-1 at 1 A g-1), enhanced rate capability (59%), and exceptional cycling stability (92.5% with 98.7% Coulombic efficiency) via a charge storage mechanism reminiscent of a battery. The augmented charge storage characteristics are attributed to the collaborative features of the active constituents, amplified availability of active sites inherent in the nanospikes, and the proficient redox chemical reactions of multi-metallic guest species. When using nitrogen-doped carbon nanofibers as the anode to fabricate hybrid supercapacitors, the device exhibits high energy and power densities of 62.98 Wh kg-1 and 6834 W kg-1, respectively, and shows excellent long-term cycling stability (95.4% after 5000 cycles), which affirms the significant potential of the proposed design for applications in hybrid supercapacitors. The DFT study showed the strong coupling of the oxygen from the electrolyte OH- with the metal atom of the nanostructures, resulting in high adsorption properties that facilitate the redox reaction kinetics.

Słowa kluczowe:
defect engineering, Nanospike, advanced electrode, hybrid, MOF, Supercapacitor

Afiliacje autorów:
Nwaji N. - inna afiliacja
Juyong G. - inna afiliacja
Mahendra G. - inna afiliacja
Hyojin K. - IPPT PAN
Adewale Hammed P. - inna afiliacja
Abhishek S. - inna afiliacja
Nirpendra S. - inna afiliacja
Jaebeom L. - Lexington High School (US)
200p.
3.  Nwaji N., Juyong G., My‐Chi N., Huu‐Quang N., Hyojin K., Youngeun C., Youngmi K., Hongxia C., Jaebeom L., Emerging potentials of Fe-based nanomaterials for chiral sensing and imaging, Medicinal Research Review, ISSN: 1098-1128, DOI: 10.1002/med.22003, pp.Journal of Medicinal Research-22003, 2024

Streszczenie:
Fe-based nanostructures have possessed promising properties that make it suitable for chiral sensing and imaging applications owing to their ultra-small size, non-toxicity, biocompatibility, excellent photostability, tunable fluorescence, and water solubility. This review summarizes the recent research progress in the field of Fe-based nanostructures and places special emphases on their applications in chiral sensing and imaging. The synthetic strategies to prepare the targeted Fe-based structures were also introduced. The chiral sensing and imaging applications of the nanostructures are discussed in details.

Afiliacje autorów:
Nwaji N. - IPPT PAN
Juyong G. - inna afiliacja
My‐Chi N. - inna afiliacja
Huu‐Quang N. - inna afiliacja
Hyojin K. - inna afiliacja
Youngeun C. - inna afiliacja
Youngmi K. - inna afiliacja
Hongxia C. - inna afiliacja
Jaebeom L. - Lexington High School (US)
140p.
4.  Nwaji N., Getasew Mulualem Z., Juyong G., Hyojin K., Lemma Tushome T., Yujin C., Mahedra G., Hyeyoung S., Jaebeom L., Dimeric NiCo single-atom anchored on ultrathin N-doped 2D molybdenum carbide boosted performance in solid-state supercapacitor, Journal of Energy Storage, ISSN: 2352-152X, DOI: 10.1016/j.est.2024.110671, Vol.83, pp.Journal of Energy Storage-110671, 2024

Streszczenie:
Tuning the electronic structure of single-atom catalysts through dimeric single-atom formation could be an innovative approach to increasing their energy storage activity, but the process of achieving this is challenging. In this study, we designed a simple technique to obtain Nisingle bondCo single atom dimers (SADs) anchored on N-doped molybdenum carbide (N-Mo2C) through in-situ encapsulation of Nisingle bondCo into molybdenum polydopamine, followed by annealing with optimal tuning of nitrogen dopant. The Nisingle bondCo atomic level coordination was confirmed with X-ray absorption spectroscopy. When used as energy storage supercapacitor, The NiCo-SADs showed enhanced specific capacity (1004.8 F g−1 at 1 A g−1), enhanced rate capability (75 %), and exceptional cycling stability (93.6 % with 98.5 % coulombic efficiency) via a dominant capacitive charge storage. The augmented charge storage characteristics are attributed to the collaborative features of the active Nisingle bondCo constituents acting as electron reservoir for effective adsorption of HO− ion during the electrochemical process. The DFT study showed thermodynamically favorable OH− adsorption between the three metal bridges that promoted redox reaction kinetics and enhanced conductivity for the NiCo-SADs. When using N-Mo2C as the anode to fabricate hybrid supercapacitors, the device exhibits high energy density of 69.69 Wh kg−1 at power density of 8200 W kg−1, respectively and shows excellent long-term cycling stability (93.42 % after 3000 cycles), which affirms the potential of the assembled device for applications in solid state supercapacitors.

Afiliacje autorów:
Nwaji N. - IPPT PAN
Getasew Mulualem Z. - inna afiliacja
Juyong G. - inna afiliacja
Hyojin K. - inna afiliacja
Lemma Tushome T. - inna afiliacja
Yujin C. - inna afiliacja
Mahedra G. - inna afiliacja
Hyeyoung S. - inna afiliacja
Jaebeom L. - Lexington High School (US)
100p.
5.  Mahendra G., Huu-Quang N., Sohyun K., Birhanu Bayissa G., Lemma Teshome T., Nwaji N., My-Chi Thi N., Juyong G., Jaebeom L., Rugged forest morphology of magnetoplasmonic nanorods that collect maximum light for photoelectrochemical water splitting, Nano Micro Small Journal, ISSN: 1613-6829, DOI: 10.1002/smll.202302980, Vol.19, pp.Small-2302980, 2024

Streszczenie:
A feasible nanoscale framework of heterogeneous plasmonic materials and
proper surface engineering can enhance photoelectrochemical (PEC)
water-splitting performance owing to increased light absorbance, efficient
bulk carrier transport, and interfacial charge transfer. This article introduces a
new magnetoplasmonic (MagPlas) Ni-doped Au@FexOy nanorods (NRs)
based material as a novel photoanode for PEC water-splitting. A two stage
procedure produces core–shell Ni/Au@FexOy MagPlas NRs. The first-step is
a one-pot solvothermal synthesis of Au@FexOy. The hollow FexOy nanotubes
(NTs) are a hybrid of Fe2O3 and Fe3O4, and the second-step is a sequential
hydrothermal treatment for Ni doping. Then, a transverse magnetic
field-induced assembly is adopted to decorate Ni/Au@FexOy on FTO glass to
be an artificially roughened morphologic surface called a rugged forest,
allowing more light absorption and active electrochemical sites. Then, to
characterize its optical and surface properties, COMSOL Multiphysics
simulations are carried out. The core–shell Ni/Au@FexOy MagPlas NRs
increase photoanode interface charge transfer to 2.73 mAcm−2 at 1.23 V RHE.
This improvement is made possible by the rugged morphology of the NRs,
which provide more active sites and oxygen vacancies as the hole transfer
medium. The recent finding may provide light on plasmonic photocatalytic
hybrids and surface morphology for effective PEC photoanodes.

Afiliacje autorów:
Mahendra G. - inna afiliacja
Huu-Quang N. - inna afiliacja
Sohyun K. - inna afiliacja
Birhanu Bayissa G. - inna afiliacja
Lemma Teshome T. - inna afiliacja
Nwaji N. - IPPT PAN
My-Chi Thi N. - inna afiliacja
Juyong G. - inna afiliacja
Jaebeom L. - Lexington High School (US)

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024