Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Jeremiah Abiade


Ostatnie publikacje
1.  Silva M.J., Dias Y.J., Zaszczyńska A., Rojas Robles J., Abiade J., Kowalczyk T., Kołbuk-Konieczny D., Sajkiewicz P., Yarin A.L., Biocomposite-based fibrous scaffolds of natural rubber/polyhydroxybutyrate blend reinforced with 45S5 bioglass aiming at biomedical applications, Polymer Composites, ISSN: 0272-8397, DOI: 10.1002/pc.27839, pp.1-21, 2023

Streszczenie:
The solution blow spinning technique was used to fabricate a new biocomposite fibrous mat consisting of natural rubber (NR) and polyhydroxybutyrate (PHB) bioblend, with various loads of 45S5 bioglass (BG) particles. According to SEM analysis, NR fibers exhibited ribbon-like morphologies, whereas the addition of PHB resulted in improved fiber formation and a reduction in their diameter. In NR-PHB/BG biocomposites with varying BG loadings, typical thermal degradation events of PHB (stage i) and NR (stage ii) were observed. In comparison with pure PHB, the TG/DTG curves of NR-PHB/BG specimens revealed a lower stage i degradation peak. Such an outcome is possibly due to the fact that PHB in the NR-PHB fibers is located predominantly at the surface, that is, PHB is more susceptible to thermal degradation. The NR-PHB/BG biocomposite possessed an increased stiffness due to the addition of PHB and BG, resulting in an increased stress and a decreased strain at rupture compared to the pure NR and NR-PHB mats. DMA analysis revealed two well-defined regions, above and below the glass transition temperature (Tg), for the storage modulus (E') of the NR-PHB/BG specimens. The values of E' were in both regions for NR-PHB/BG specimens increased at higher BG content. The measured tanδ = E″/E' was used to determine the Tg value for all specimens, with Tg found to be in the −49 to −46°C range. Finally, NR-PHB/BG biocomposite fibrous were proven noncytotoxic by in-vitro testing on fibroblasts. These biocomposites enhanced cell growth, holding great promise for tissue engineering applications.

Słowa kluczowe:
45S5 bioglass, biocomposite fibrous mat, biomedical applications, natural rubber, polyhydroxybutyrate, solution blow spinning

Afiliacje autorów:
Silva M.J. - inna afiliacja
Dias Y.J. - inna afiliacja
Zaszczyńska A. - IPPT PAN
Rojas Robles J. - inna afiliacja
Abiade J. - inna afiliacja
Kowalczyk T. - IPPT PAN
Kołbuk-Konieczny D. - IPPT PAN
Sajkiewicz P. - IPPT PAN
Yarin A.L. - Technion - Israel Institute of Technology (IL)
70p.
2.  Dias Y.J., Robles J.R., Sinha-Ray S., Abiade J., Pourdeyhimi B., Niemczyk-Soczyńska B., Kołbuk D., Sajkiewicz P., Yarin A.L., Solution-blown poly(hydroxybutyrate) and ε-poly-l-lysine submicro- and microfiber-based sustainable nonwovens with antimicrobial activity for single-use applications, ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.1c00594, Vol.7, No.8, pp.3980-3992, 2021

Streszczenie:
Antimicrobial nonwovens for single use applications (e.g., diapers, sanitary napkins, medical gauze, etc.) are of utmost importance as the first line of defense against bacterial infections. However, the utilization of petrochemical nondegradable polymers in such nonwovens creates sustainability-related issues. Here, sustainable poly(hydroxybutyrate) (PHB) and ε-poly-l-lysine (ε-PLL) submicro- and microfiber-based antimicrobial nonwovens produced by a novel industrially scalable process, solution blowing, have been proposed. In such nonwovens, ε-PLL acts as an active material. In particular, it was found that most of ε-PLL is released within the first hour of deployment, as is desirable for the applications of interest. The submicro- and microfiber mat was tested against C. albicans and E. coli, and it was found that ε-PLL-releasing microfibers result in a significant reduction of bacterial colonies. It was also found that ε-PLL-releasing antimicrobial submicro- and microfiber nonwovens are safe for human cells in fibroblast culture. Mechanical characterization of these nonwovens revealed that, even though they are felt as soft and malleable, they possess sufficient strength, which is desirable in the end-user applications.

Słowa kluczowe:
PHB submicro- and microfibers, antimicrobial nonwovens, ε-PLL release, E. coli, C. albicans

Afiliacje autorów:
Dias Y.J. - inna afiliacja
Robles J.R. - inna afiliacja
Sinha-Ray S. - inna afiliacja
Abiade J. - inna afiliacja
Pourdeyhimi B. - inna afiliacja
Niemczyk-Soczyńska B. - IPPT PAN
Kołbuk D. - IPPT PAN
Sajkiewicz P. - IPPT PAN
Yarin A.L. - Technion - Israel Institute of Technology (IL)
140p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024