Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Małgorzata Lewandowska


Ostatnie publikacje
1.  Maździarz M., Psiuk R., Krawczyńska A., Lewandowska M., Mościcki T., Effect of zirconium doping on the mechanical properties of W1−xZrxB2 on the basis of first‑principles calculations and magnetron sputtered films, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1007/s43452-022-00513-6, Vol.22, No.193, pp.1-30, 2022

Streszczenie:
Potentially superhard W1−xZrxB2 polymorphs, hP6-P63/mmc-WB2 and hP3-P6/mmm-WB2 , were thoroughly analyzed with zirconium doping in the range of x=0-25%, within the framework of the first-principles density functional theory, from both a structural and a mechanical point of view. The obtained results were subsequently compared with the properties of material deposited by the magnetron sputtering method. All predicted structures are mechanically and thermodynamically stable. Theoretical calculations suggest a decrease in hardness Hv and fracture toughness KIC of the hP6 phase with zirconium doping but no such effect on the hP3 phase. It was observed that an additional defect in the analyzed structure significantly weakens the hP6 phase but strengthens the hP3 phase. The deposited films are characterized by greater hardness but lower fracture toughness. The results of experiments show that not only is solid solution hardening responsible for strengthening the predicted new material but also the change in microstructure, the Hall–Petch effect and vacancies.

Słowa kluczowe:
Ab initio, Transition metal borides, Mechanical properties, Magnetron sputtered coatings, Hardness

Afiliacje autorów:
Maździarz M. - IPPT PAN
Psiuk R. - IPPT PAN
Krawczyńska A. - Politechnika Warszawska (PL)
Lewandowska M. - inna afiliacja
Mościcki T. - IPPT PAN
140p.
2.  Nosewicz S., Bazarnik P., Clozel M., Kurpaska Ł., Jenczyk P., Jarząbek D., Chmielewski M., Romelczyk-Baishya B., Lewandowska M., Pakieła Z., Huang Y., Langdon T.G., A multiscale experimental analysis of mechanical properties and deformation behavior of sintered copper–silicon carbide composites enhanced by high-pressure torsion, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1007/s43452-021-00286-4, Vol.21, pp.131-1-19, 2021

Streszczenie:
Experiments were conducted to investigate, within the framework of a multiscale approach, the mechanical enhancement, deformation and damage behavior of copper–silicon carbide composites (Cu–SiC) fabricated by spark plasma sintering (SPS) and the combination of SPS with high-pressure torsion (HPT). The mechanical properties of the metal–matrix composites were determined at three different length scales corresponding to the macroscopic, micro- and nanoscale. Small punch testing was employed to evaluate the strength of composites at the macroscopic scale. Detailed analysis of microstructure evolution related to SPS and HPT, sample deformation and failure of fractured specimens was conducted using scanning and transmission electron microscopy. A microstructural study revealed changes in the damage behavior for samples processed by HPT and an explanation for this behavior was provided by mechanical testing performed at the micro- and nanoscale. The strength of copper samples and the metal–ceramic interface was determined by microtensile testing and the hardness of each composite component, corresponding to the metal matrix, metal–ceramic interface, and ceramic reinforcement, was measured using nano-indentation. The results confirm the advantageous effect of large plastic deformation on the mechanical properties of Cu–SiC composites and demonstrate the impact on these separate components on the deformation and damage type.

Słowa kluczowe:
copper–silicon carbide composite, high-pressure torsion, metal–matrix composites, multiscale analysis, nano-indentation, small punch test

Afiliacje autorów:
Nosewicz S. - IPPT PAN
Bazarnik P. - Politechnika Warszawska (PL)
Clozel M. - National Centre for Nuclear Research (PL)
Kurpaska Ł. - National Centre for Nuclear Research (PL)
Jenczyk P. - IPPT PAN
Jarząbek D. - IPPT PAN
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Romelczyk-Baishya B. - Politechnika Warszawska (PL)
Lewandowska M. - inna afiliacja
Pakieła Z. - Politechnika Warszawska (PL)
Huang Y. - Bournemouth University (GB)
Langdon T.G. - University of Southampton (GB)
140p.
3.  Bazarnik P., Nosewicz S., Romelczyk-Baishya B., Chmielewski M., Strojny-Nędza A., Maj J., Huang Y., Lewandowska M., Langdon T.G., Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC composite, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2019.138350, Vol.766, pp.138350-1-11, 2019

Streszczenie:
This investigation examines the problem of homogenization in metal matrix composites (MMCs) and the methods of increasing their strength using severe plastic deformation (SPD). In this research MMCs of pure copper and silicon carbide were synthesized by spark plasma sintering (SPS) and then further processed via high-pressure torsion (HPT). The microstructures in the sintered and in the deformed materials were investigated using Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM). The mechanical properties were evaluated in microhardness tests and in tensile testing. The thermal conductivity of the composites was measured with the use of a laser pulse technique. Microstructural analysis revealed that HPT processing leads to an improved densification of the SPS-produced composites with significant grain refinement in the copper matrix and with fragmentation of the SiC particles and their homogeneous distribution in the copper matrix. The HPT processing of Cu and the Cu–SiC samples enhanced their mechanical properties at the expense of limiting their plasticity. Processing by HPT also had a major influence on the thermal conductivity of materials. It is demonstrated that the deformed samples exhibit higher thermal conductivity than the initial coarse-grained samples.

Słowa kluczowe:
copper, silicon carbide, high-pressure torsion, spark plasma sintering, thermal conductivity

Afiliacje autorów:
Bazarnik P. - Politechnika Warszawska (PL)
Nosewicz S. - IPPT PAN
Romelczyk-Baishya B. - Politechnika Warszawska (PL)
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Strojny-Nędza A. - Institute of Electronic Materials Technology (PL)
Maj J. - IPPT PAN
Huang Y. - Bournemouth University (GB)
Lewandowska M. - inna afiliacja
Langdon T.G. - University of Southampton (GB)
140p.
4.  Chmielewski M., Pietrzak K., Teodorczyk M., Nosewicz S., Jarząbek D.M., Zybała R., Bazarnik P., Lewandowska M., Strojny-Nędza A., Effect of metallic coating on the properties of copper-silicon carbide composites, APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2016.12.130, Vol.421, pp.159-169, 2017

Streszczenie:
In the presented paper a coating of SiC particles with a metallic layer were used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950C was provided. The almost fully dense materials were obtained (> 97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

Słowa kluczowe:
metal matrix composites, silicon carbide, metallic layers deposition, thermal conductovity, interface strength

Afiliacje autorów:
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Pietrzak K. - inna afiliacja
Teodorczyk M. - Institute of Electronic Materials Technology (PL)
Nosewicz S. - IPPT PAN
Jarząbek D.M. - IPPT PAN
Zybała R. - Politechnika Warszawska (PL)
Bazarnik P. - Politechnika Warszawska (PL)
Lewandowska M. - inna afiliacja
Strojny-Nędza A. - Institute of Electronic Materials Technology (PL)
35p.
5.  Chmielewski M., Pietrzak K., Strojny-Nędza A., Kaszyca K., Zybala R., Bazarnik P., Lewandowska M., Nosewicz S., Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique, SCIENCE OF SINTERING, ISSN: 0350-820X, DOI: 10.2298/SOS1701011C, Vol.49, No.1, pp.11-22, 2017

Streszczenie:
The presented paper investigates the relationship between the microstructure and thermal properties of copper–silicon carbide composites obtained through hot pressing (HP) and spark plasma sintering (SPS) techniques. The microstructural analysis showed a better densification in the case of composites sintered in the SPS process. TEM investigations revealed the presence of silicon in the area of metallic matrix in the region close to metal ceramic boundary. It is the product of silicon dissolving process in copper occurring at an elevated temperature. The Cu-SiC interface is significantly defected in composites obtained through the hot pressing method, which has a major influence on the thermal conductivity of materials.

Słowa kluczowe:
metal matrix composites, silicon carbide, interface, spark plasma sintering, thermal conductivity

Afiliacje autorów:
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Pietrzak K. - inna afiliacja
Strojny-Nędza A. - Institute of Electronic Materials Technology (PL)
Kaszyca K. - Lukasiewicz Institute of Microelectronics and Photonics (PL)
Zybala R. - Politechnika Warszawska (PL)
Bazarnik P. - Politechnika Warszawska (PL)
Lewandowska M. - inna afiliacja
Nosewicz S. - IPPT PAN
30p.
6.  Chmielewski M., Nosewicz S., Jakubowska D., Lewandowska M., Mizera J., Rojek J., Bazarnik P., The influence of sintering time on the microstructural properties of chromium-rhenium matrix composites, International Journal of Refractory Metals and Hard Materials, ISSN: 0263-4368, DOI: 10.1016/j.ijrmhm.2016.05.017, Vol.59, pp.78-86, 2016

Streszczenie:
This paper comprises the results of studies of the changes in the structure of Cr-Re-Al2O3 metal matrix depending on heat treatment time in sintering temperature. The density of material with the following composition: 95%(75%Cr-25%Al2O3)+5%Re was increased using the technique of sintering under pressure (30MPa) at the temperature of 1450°C. As a result, materials characterized by a high relative density (< 97% of theoretical density) were obtained. Next, they were subjected to structural tests including scanning and transmission electron microscopy as well as X-ray diffraction. Changes in the phase composition, grains size and parameters of crystallographic structure depending on heat treatment time were analysed. It was found that during sintering rhenium is dissolved in the chromium matrix and Cr-Re solid solution is formed. When sintering time is extended to 120 min, the matrix of the composite becomes completely homogenous, which results in an increased strength of the composite.

Słowa kluczowe:
Metal matrix composites, Rhenium, Hot pressing, Microstructure analysis, XRD

Afiliacje autorów:
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Nosewicz S. - IPPT PAN
Jakubowska D. - inna afiliacja
Lewandowska M. - inna afiliacja
Mizera J. - Politechnika Warszawska (PL)
Rojek J. - IPPT PAN
Bazarnik P. - Politechnika Warszawska (PL)
35p.

Abstrakty konferencyjne
1.  Mościcki T., Psiuk R., Ciemiorek-Bartkowska M., Lewandowska M., Influence of temperature on the properties of W-Ti-B coatings deposited with the HiPIMS method, PLATHINIUM 2023, PLASMA THIN FILM INTERNATIONAL UNION MEETING, 2023-09-11/09-15, Antibes, French Riviera (FR), No.TRIB-P2-176, pp.183-183, 2023

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024