Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Su R. Shin

Massachusetts Institute of Technology (US)

Ostatnie publikacje
1.  Fallahi A., Yazdi I., Serex L., Lasha E., Faramarzi N., Tarlan F., Avci H., Almeida R., Sharifi F., Rinoldi C., Gomes M.E., Shin S.R., Khademhosseini A., Akbari M., Tamayol A., Customizable composite fibers for engineering skeletal muscle models, ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.9b00992, Vol.6, No.2, pp.1112-1123, 2020

Streszczenie:
Engineering tissue-like scaffolds that can mimic the microstructure, architecture, topology, and mechanical properties of native tissues while offering an excellent environment for cellular growth has remained an unmet need. To address these challenges, multi-compartment composite fibers are fabricated. These fibers can be assembled through textile processes to tailor tissue-level mechanical and electrical properties independent of cellular level components. Textile technologies also allow controlling the distribution of different cell types and microstructure of fabricated constructs and directing cellular growth within 3D microenvironment. Here, we engineered composite fibers from biocompatible cores and biologically relevant hydrogel sheaths. The fibers are mechanically robust to be assembled using textile processes and could support adhesion, proliferation and maturation of cell populations important for engineering of skeletal muscles. We also demonstrated that the changes in the electrical conductivity of the multi-compartment fibers could significantly enhance myogenesis in vitro.

Słowa kluczowe:
reinforced fibers, biotextiles, tissue engineering, organ weaving, interpenetrating network hydrogels, skeletal muscles

Afiliacje autorów:
Fallahi A. - Paul Scherrer Institut (CH)
Yazdi I. - Massachusetts Institute of Technology (US)
Serex L. - Brigham and Women's Hospital (US)
Lasha E. - Brigham and Women's Hospital (US)
Faramarzi N. - Brigham and Women's Hospital (US)
Tarlan F. - Brigham and Women's Hospital (US)
Avci H. - Eskisehir Osmangazi University (TR)
Almeida R. - Brigham and Women's Hospital (US)
Sharifi F. - Massachusetts Institute of Technology (US)
Rinoldi C. - inna afiliacja
Gomes M.E. - University of Minho (PT)
Shin S.R. - Massachusetts Institute of Technology (US)
Khademhosseini A. - Massachusetts Institute of Technology (US)
Akbari M. - Brigham and Women's Hospital (US)
Tamayol A. - Massachusetts Institute of Technology (US)
140p.
2.  Nasajpour A., Ansari S., Rinoldi C., Rad A.S., Aghaloo T., Shin S.R., Mishra Y.K., Adelung R., Święszkowski W., Annabi N., Khademhosseini A., Moshaverinia A., Tamayol A., A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics, Advanced Functional Materials, ISSN: 1616-301X, DOI: 10.1002/adfm.201703437, Vol.28, No.3, pp.1703437-1-8, 2017

Streszczenie:
Periodontitis is a prevalent chronic, destructive inflammatory disease affecting tooth‐supporting tissues in humans. Guided tissue regeneration strategies are widely utilized for periodontal tissue regeneration generally by using a periodontal membrane. The main role of these membranes is to establish a mechanical barrier that prevents the apical migration of the gingival epithelium and hence allowing the growth of periodontal ligament and bone tissue to selectively repopulate the root surface. Currently available membranes have limited bioactivity and regeneration potential. To address such challenges, an osteoconductive, antibacterial, and flexible poly(caprolactone) (PCL) composite membrane containing zinc oxide (ZnO) nanoparticles is developed. The membranes are fabricated through electrospinning of PCL and ZnO particles. The physical properties, mechanical characteristics, and in vitro degradation of the engineered membrane are studied in detail. Also, the osteoconductivity and antibacterial properties of the developed membrane are analyzed in vitro. Moreover, the functionality of the membrane is evaluated with a rat periodontal defect model. The results confirmed that the engineered membrane exerts both osteoconductive and antibacterial properties, demonstrating its great potential for periodontal tissue engineering.

Słowa kluczowe:
electrospinning, guided tissue regeneration, osteoconductive, periodontal regeneration, zinc oxide

Afiliacje autorów:
Nasajpour A. - Massachusetts Institute of Technology (US)
Ansari S. - University of California (US)
Rinoldi C. - inna afiliacja
Rad A.S. - Massachusetts Institute of Technology (US)
Aghaloo T. - University of California (US)
Shin S.R. - Massachusetts Institute of Technology (US)
Mishra Y.K. - Kiel University (DE)
Adelung R. - Kiel University (DE)
Święszkowski W. - inna afiliacja
Annabi N. - Massachusetts Institute of Technology (US)
Khademhosseini A. - Massachusetts Institute of Technology (US)
Moshaverinia A. - University of California (US)
Tamayol A. - Massachusetts Institute of Technology (US)
45p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024