mgr inż. Krzysztof Zembrzycki |
![]() |
|
Ostatnie publikacje
1. | Pierini F., Lanzi M.♦, Nakielski P., Pawłowska S., Urbanek O., Zembrzycki K., Kowalewski T.A., Single-Material Organic Solar Cells Based on Electrospun Fullerene-Grafted Polythiophene Nanofibers, Macromolecules, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.7b00857, Vol.50, No.13, pp.4972-4981, 2017![]() Streszczenie: Highly efficient single-material organic solar cells (SMOCs) based on fullerene-grafted polythiophenes were fabricated by incorporating electrospun one-dimensional (1D) nanostructures obtained from polymer chain stretching. Poly(3-alkylthiophene) chains were chemically tailored in order to reduce the side effects of charge recombination which severely affected SMOC photovoltaic performance. This enabled us to synthesize a donor–acceptor conjugated copolymer with high solubility, molecular weight, regioregularity, and fullerene content. We investigated the correlations among the active layer hierarchical structure given by the inclusion of electrospun nanofibers and the solar cell photovoltaic properties. The results indicated that SMOC efficiency can be strongly increased by optimizing the supramolecular and nanoscale structure of the active layer, while achieving the highest reported efficiency value (PCE = 5.58%). The enhanced performance may be attributed to well-packed and properly oriented polymer chains. Overall, our work demonstrates that the active material structure optimization obtained by including electrospun nanofibers plays a pivotal role in the development of efficient SMOCs and suggests an interesting perspective for the improvement of copolymer-based photovoltaic device performance using an alternative pathway. Afiliacje autorów:
| ![]() | 45p. | ||||||||||||||||||||||||
2. | Pawłowska S., Nakielski P., Pierini F., Piechocka I.K., Zembrzycki K., Kowalewski T.A., Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow, PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0187815, Vol.12, No.11, pp.1-21, 2017![]() Streszczenie: The recent progress in bioengineering has created great interest in the dynamics and manipulation of long, deformable macromolecules interacting with fluid flow. We report experimental data on the cross-flow migration, bending, and buckling of extremely deformable hydrogel nanofilaments conveyed by an oscillatory flow into a microchannel. The changes in migration velocity and filament orientation are related to the flow velocity and the filament’s initial position, deformation, and length. The observed migration dynamics of hydrogel filaments qualitatively confirms the validity of the previously developed worm-like bead-chain hydrodynamic model. The experimental data collected may help to verify the role of hydrodynamic interactions in molecular simulations of long molecular chains dynamics. Afiliacje autorów:
| ![]() | 35p. | ||||||||||||||||||||||||
3. | Stobiecka M.♦, Dworakowska B.♦, Jakieła S.♦, Lukasiak A.♦, Chalupa A.♦, Zembrzycki K., Sensing of survivin mRNA in malignant astrocytes using graphene oxide nanocarrier-supported oligonucleotide molecular beacons, Sensors and Actuators B: Chemical, ISSN: 0925-4005, DOI: 10.1016/j.snb.2016.04.176, Vol.235, pp.136-145, 2016![]() Streszczenie: While a significant progress has recently been made in therapy of many cancers, the cure for some high grade cancers, such as the astrocytic cancers, remains elusive. In the latter case, specificity and functionality of the brain tissue limit the options available to surgical and chemotherapeutic treatments. In view of the prospects of reversible blood-brain barrier opening, we have investigated the possibility of a transfection of malignant astrocyte cells with novel graphene oxide nanosheet (GONS) nanocarrier-supported molecular beacons (MB) encoded for the detection of a biomarker survivin (Sur). The behavior of GONS-supported SurMBs (GONS@SurMB) has been characterized using fluorescence spectroscopy, SEM, TEM, Raman spectroscopy, melting transients, resonance elastic light scattering, and cell viability testing. With the GONS@SurMB, we have achieved the limit of detection for tDNA at 37°C: LOD = 24 nM (S/N = 3). In tests with complementary targets and mismatched strands, the proposed fluorescent turn-on GONS@SurMB probes have shown a single-nucleotide polymorphism sensitivity. We have demonstrated the transfection of U-87 MG astrocyte cells with GONS@SurMB nanocarriers which release SurMB upon mRNA detection. The MTT tests indicate that the GONS carrier concentrations up to 133 μg/mL are not cytotoxic to astrocyte cells, although a cell assembly has been encountered at higher carrier concentrations. The GONS alone does not assemble appreciably up to 80 μg/mL. The proposed method can be used for the detection of Sur mRNA in malignant cells and the GONS@SurMB nanocarriers can also be considered as viable candidates for future gene therapy of brain cancers. Słowa kluczowe: Survivin detection, Molecular beacon, Graphene oxide nanocarrier, Survivin mRNA, U-87 malignant glioma cells Afiliacje autorów:
| ![]() | 40p. | ||||||||||||||||||||||||
4. | Pierini F., Lanzi M.♦, Nakielski P., Pawłowska S., Zembrzycki K., Kowalewski T.A., Electrospun poly(3-hexylthiophene)/poly(ethylene oxide)/graphene oxide composite nanofibers: effects of graphene oxide reduction, Polymers for Advanced Technologies, ISSN: 1042-7147, DOI: 10.1002/pat.3816, Vol.27, No.11, pp.1465-1475, 2016![]() Streszczenie: In this article, we report on the production by electrospinning of P3HT/PEO, P3HT/PEO/GO, and P3HT/PEO/rGO nanofibers in which the filler is homogeneously dispersed and parallel oriented along the fibers axis. The effect of nanofillers' presence inside nanofibers and GO reduction was studied, in order to reveal the influence of the new hierarchical structure on the electrical conductivity and mechanical properties. An in-depth characterization of the purity and regioregularity of the starting P3HT as well as the morphology and chemical structure of GO and rGO was carried out. The morphology of the electrospun nanofibers was examined by both scanning and transmission electron microscopy. The fibrous nanocomposites are also characterized by differential scanning calorimetry to investigate their chemical structure and polymer chains arrangements. Finally, the electrical conductivity of the electrospun fibers and the elastic modulus of the single fibers are evaluated using a four-point probe method and atomic force microscopy nanoindentation, respectively. The electrospun materials crystallinity as well as the elastic modulus increase with the addition of the nanofillers while the electrical conductivity is positively influenced by the GO reduction. Słowa kluczowe: electrospun composite nanofibers, poly(3-hexylthiophene), graphene oxide, electrical conductivity, mechanical properties Afiliacje autorów:
| ![]() | 30p. | ||||||||||||||||||||||||
5. | Pierini F., Zembrzycki K., Nakielski P., Pawłowska S., Kowalewski T.A., Atomic force microscopy combined with optical tweezers (AFM/OT), MEASUREMENT SCIENCE AND TECHNOLOGY, ISSN: 0957-0233, DOI: 10.1088/0957-0233/27/2/025904, Vol.27, pp.025904-1-11, 2016![]() Streszczenie: The role of mechanical properties is essential to understand molecular, biological materials, and nanostructures dynamics and interaction processes. Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. In this paper we present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The focused laser beam, on which optical tweezers are based, provides us with the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies. AFM/OT equipment is described and characterized by studying the ability to trap dielectric objects and quantifying the detectable and applicable forces. Finally, optical tweezers calibration methods and instrument applications are given. Słowa kluczowe: optical trap, nanomanipulation, nanomechanics, femtonewton forces Afiliacje autorów:
| ![]() | 30p. | ||||||||||||||||||||||||
6. | Noszczyk B.H.♦, Kowalczyk T., Łyżniak M.♦, Zembrzycki K., Mikułowski G., Wysocki J.♦, Kawiak J.♦, Pojda Z.♦, Biocompatibility of electrospun human albumin: a pilot study, Biofabrication, ISSN: 1758-5082, DOI: 10.1088/1758-5090/7/1/015011, Vol.7, pp.015011-1-11, 2015![]() Streszczenie: Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures. Słowa kluczowe: albumin, nanofibers, wound dressing, biocompatibility, bioresorption Afiliacje autorów:
| ![]() | 45p. | ||||||||||||||||||||||||
7. | Nakielski P., Pawłowska S., Pierini F., Liwińska W.♦, Hejduk P.♦, Zembrzycki K., Zabost E.♦, Kowalewski T.A., Hydrogel nanofilaments via core-shell electrospinning, PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0129816, Vol.10, No.6, pp.e0129816-1-16, 2015![]() Streszczenie: Recent biomedical hydrogels applications require the development of nanostructures with controlled diameter and adjustable mechanical properties. Here we present a technique for the production of flexible nanofilaments to be used as drug carriers or in microfluidics, with deformability and elasticity resembling those of long DNA chains. The fabrication method is based on the core-shell electrospinning technique with core solution polymerisation post electrospinning. Produced from the nanofibers highly deformable hydrogel nanofilaments are characterised by their Brownian motion and bending dynamics. The evaluated mechanical properties are compared with AFM nanoindentation tests. Słowa kluczowe: Gels, Nanomaterials, Atomic force microscopy, Polymerization, Bending, Mass diffusivity, Mechanical properties, Hydrodynamics Afiliacje autorów:
| ![]() | 40p. | ||||||||||||||||||||||||
8. | Oliferuk W.♦, Maj M., Zembrzycki K., Determination of the Energy Storage Rate Distribution in the Area of Strain Localization Using Infrared and Visible Imaging, EXPERIMENTAL MECHANICS, ISSN: 0014-4851, DOI: 10.1007/s11340-013-9819-1, Vol.55, pp.753-760, 2015![]() Streszczenie: The presented work is devoted to a new simple method of determination of the energy storage rate (the ratio of the stored energy increment to the plastic work increment) that allows obtaining distribution of this quantity in the area of strain localization. The method is based on the simultaneous measurements of the temperature and displacement distributions on the specimen surface during a tensile deformation. The experimental procedure involves two complementary techniques: i.e. infrared thermography (IRT) and visible light imaging. It has been experimentally shown that during the evolution of plastic strain localization the energy storage rate in some areas of the deformed specimen drops to zero. It can be treated as the plastic instability criterion. Słowa kluczowe: Infrared thermography, Energy storage rate distribution, Strain localization, Plastic instability criterion, Texture evolution Afiliacje autorów:
| ![]() | 30p. | ||||||||||||||||||||||||
9. | Nakielski P., Kowalczyk T., Zembrzycki K., Kowalewski T.A., Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue, Journal of Biomedical Materials Research Part B: Applied Biomaterials, ISSN: 1552-4973, DOI: 10.1002/jbm.b.33197, Vol.103B, No.2, pp.282-291, 2015![]() Streszczenie: Drug delivery systems based on nanofibrous mats appear to be a promising healing practice for preventing brain neurodegeneration after surgery. One of the problems encountered during planning and constructing optimal delivery system based on nanofibrous mats is the estimation of parameters crucial for predicting drug release dynamics. This study describes our experimental setup allowing for spatial and temporary evaluation of drug release from nanofibrous polymers to obtain data necessary to validate appropriate numerical models. We applied laser light sheet method to illuminate released fluorescent drug analog and CCD camera for imaging selected cross-section of the investigated volume. Transparent hydrogel was used as a brain tissue phantom. The proposed setup allows for continuous observation of drug analog (fluorescent dye) diffusion for time span of several weeks. Images captured at selected time intervals were processed to determine concentration profiles and drug release kinetics. We used presented method to evaluate drug release from several polymers to validate numerical model used for optimizing nanofiber system for neuroprotective dressing. Słowa kluczowe: neural therapy, brain phantom, drug delivery, laser light sheet, computational modeling, nanofibers Afiliacje autorów:
| ![]() | 30p. |
Lista ostatnich monografii
1. 471 | Zembrzycki K., Pawłowska S., Nakielski P., Pierini F., Development of a hybrid Atomic Force microscope and Optical Tweezers apparatus , IPPT Reports on Fundamental Technological Research, 2, pp.1-58, 2016 |
Lista rozdziałów w ostatnich monografiach
1. 467 | Kowalewski T.A., Nakielski P., Pierini F., Zembrzycki K., Pawłowska S., Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, rozdział: Micro and nano fluid mechanics, CRC Press/Balkema, Taylor & Francis Group, M. Kleiber et al. (Eds.), pp.27-34, 2016 |
Prace konferencyjne
1. | Oliferuk W., Maj M., Zembrzycki K., Distribution of energy storage rate in area of strain localization during tension of austenitic steel, IOP Conference Series: Materials Science and Engineering, ISSN: 1757-899X, DOI: 10.1088/1757-899X/71/1/012055, Vol.71, pp.012055-1-8, 2015![]() Streszczenie: The present work is devoted to experimental determination of the energy storage rate in the area of strain localization. The experimental procedure involves two complementary techniques: i.e. infrared thermography (IRT) and visible light imaging. The results of experiments have shown that during the evolution of plastic strain localization the energy storage rate in some areas of the deformed specimen drops to zero. To interpret the decrease of the energy storage rate in terms of micro-mechanisms, microstructural observations using electron back scattered diffraction (EBSC) were performed. Słowa kluczowe: energy balance, strain localization, infrared thermography, texture evolution Afiliacje autorów:
| ![]() | 15p. | |||||||||
2. | Zembrzycki K., Błoński S., Kowalewski T.A., Analysis of wall effect on the process of diffusion of nanoparticles in a microchannel, JOURNAL OF PHYSICS: CONFERENCE SERIES, ISSN: 1742-6588, DOI: 10.1088/1742-6596/392/1/012014, Vol.392, pp.012014-1-11, 2012![]() Streszczenie: In this preliminary work we introduce a new method for verification of the no-slip boundary condition on the liquid-solid interface, by analyzing variations in Brownian motion coefficients of colloidal nanoparticles as a function of distance from the wall. The experimental investigations are performed in a small channel using an epi-fluorescent microscope. For precise measurements close to the wall an evanescent wave illumination is used. The experimental data obtained for 300nm particles gave us evidence of relatively large (0.3μm) slip length. The experiments are supplemented by two-dimensional Molecular Dynamics simulations. Afiliacje autorów:
| ![]() | 10p. | |||||||||
3. | Lamparska D., Zembrzycki K., Dynamics of nanofibres conveyed by low Reynolds number flow in a microchannel, XIX Krajowa Konferencja Mechaniki Płynów, 2010-09-05/09-09, Poznań (PL), Vol.S19/F, pp.1-5, 2010 | ![]() |
Abstrakty konferencyjne
1. | Pierini F., Nakielski P., Pawłowska S., Piechocka I., Zembrzycki K., Kowalewski T.A., Development and applications of atomic force microscopy combined with optical tweezers (AFM/OT), AFM BioMed, 8th AFM BioMed Conference, 2017-09-04/09-08, Kraków (PL), pp.103, 2017![]() Streszczenie: Atomic force microscopy (AFM) is an evolution of scanning tunnelling microscopy that immediately gained popularity thanks to its ability to analyse nanomaterials. Initially, AFM was developed for nanomaterials imaging purposes, however the development of new features made it the most commonly used tool for studying the biophysical properties of biological samples. On the other hand, atomic force microscopy has limited use for examining sub-piconewton forces. Few techniques have been developed to measure forces below the AFM limit of detection. Among them, optical tweezers (OT) stand out for their high resolution, flexibility, and because they make it possible to accurately manipulate biological samples and carry out biophysics experiments without side effects thanks to their non-invasive properties. Słowa kluczowe: AFM, Optical Tweezers Afiliacje autorów:
| ![]() | ||||||||||||||||||
2. | Pawłowska S., Nakielski P., Pierini F., Zembrzycki K., Piechocka I.K., Kowalewski T.A., Tumbling, rotating and coiling of nanofilaments in an oscillating microchannel flow, BioNano6, Biomolecules and Nanostructures 6, 2017-05-10/05-14, Podlesice (PL), No.41E, pp.60, 2017 | ![]() | ||||||||||||||||||
3. | Pawłowska S., Pierini F., Nakielski P., Piechocka I., Zembrzycki K., Kowalewski T.A., Lateral Migration of Highly Deformable Nanofilaments Conveyed by Oscillatory Flow, CNM, 5th Conference on Nano- and Micromechanics, 2017-07-04/07-06, Wrocław (PL), pp.29-31, 2017![]() Słowa kluczowe: thermal fluctuations, lateral migration, flexible filaments Afiliacje autorów:
| ![]() | ||||||||||||||||||
4. | Pawłowska S., Nakielski P., Pierini F., Zembrzycki K., Kowalewski T.A., Mobility of highly deformable nanofilaments, ICTAM XXIV, 24th International Congress of Theoretical and Applied Mechanics, 2016-08-21/08-26, Montréal (CA), pp.1196-1197, 2016![]() Streszczenie: Mobility of hydrogel nanofilaments suspended in liquid is investigated to gain basic knowledge on hydrodynamic interactions biased by Brownian fluctuations. Typical for long macromolecules effects like spontaneous conformational changes and cross-flow migration are observed and evaluated. The collected experimental data can be used to validate assumptions present in numerical models describing intercellular transport of long biomolecules. Słowa kluczowe: persistence length, macromolecules, electrospinning, DNA, Brownian motion Afiliacje autorów:
| ![]() | ||||||||||||||||||
5. | Pierini F., Nakielski P., Pawłowska S., Zembrzycki K., Kowalewski T.A., Particles double layer evaluation by atomic force microscopy - optical tweezers, ICTAM XXIV, 24th International Congress of Theoretical and Applied Mechanics, 2016-08-21/08-26, Montréal (CA), pp.1204-1205, 2016![]() Streszczenie: Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. We present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The optical tweezers system provides us the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biologic al studies. The presented study is aimed to quantify the interaction forces between two single polystyrene particles in the femtonewton scale by using the developed AFM/OT equipment. Słowa kluczowe: optical trap, nanomanipulation, femtonewtons Afiliacje autorów:
| ![]() | ||||||||||||||||||
6. | Pawłowska S., Nakielski P., Pierini F., Zembrzycki K., Kowalewski T.A., Highly Deformable Hydrogel Nanofilaments in Poiseuille Flow, MNF 2016, 5th Micro and Nano Flows Conference, 2016-09-11/09-14, Milan (IT), pp.50, 2016![]() Słowa kluczowe: Hydrogel Nanofilaments, Bending Dynamics, Poiseuille Flow, Electrospinning Afiliacje autorów:
| ![]() | ||||||||||||||||||
7. | Pierini F., Zembrzycki K., Nakielski P., Pawłowska S., Kowalewski T.A., Nanomanipulating and sensing single particles interactions with combined atomic force microscopy optical tweezers (AFM/OT), MNF 2016, 5th Micro and Nano Flows Conference, 2016-09-11/09-14, Milan (IT), pp.40-41, 2016![]() Słowa kluczowe: Atomic force microscopy/optical tweezers, Nanomanipulation, Single particles analysis, Interaction force measurement, DLVO theory Afiliacje autorów:
| ![]() | ||||||||||||||||||
8. | Nakielski P., Pawłowska S., Pierini F., Hejduk P.♦, Zembrzycki K., Kowalewski T.A., Novel hydrogel nanofilaments based on electrospun core-shell fibers, Europhysics Conference Biomolecules and Nanostructures 5, 2015-05-13/05-17, Jaroszowice (PL), Vol.39C, pp.101, 2015![]() Słowa kluczowe: nanofilaments, hydrogel, long molecules flexibility Afiliacje autorów:
| ![]() | ||||||||||||||||||
9. | Pawłowska S., Nakielski P., Pierini F., Zembrzycki K., Kowalewski T.A., Mobility of nanofilaments, Experiments in Fluid Mechanics 2015, 2015-10-26/10-27, Warszawa (PL), pp.1, 2015![]() Streszczenie: We propose a microscale experimental model in form of highly deformable nanofilaments, which permits for precise optical measurements and to evaluate hydrodynamic interactions (mobility). The conducted research includes determination of the mechanical properties of elastic hydrogel nanofilaments obtained by electrospinning that can serve as experimental benchmark to validate theoretical and numerical models describing dynamics of long biological molecules (e.g. proteins, DNA). Nanofilaments mechanical properties are determined by studying their dynamic bending. in shear flow and deformations due to the thermal fluctuations (Brownian motion). These results are compared with AFM nanoindentation measurements. Data obtained from this research project will be a base to crea te biocompatible nanoobjects that can become tools for the regeneration of tissue (e.g. neural tissue). Słowa kluczowe: Biocompatible nanoobjects, highly deformable nanofilaments, regeneration of tissue Afiliacje autorów:
| ![]() | ||||||||||||||||||
10. | Nakielski P., Pawłowska S., Pierini F., Hejduk P.♦, Zembrzycki K., Kowalewski T.A., Processing and mechanical properties relationships in hydrogel nanofilamets for biological application, ICMCSF, International Conference on Mechanics of Complex Solids and Fluids, 2015-05-17/05-22, Lille (FR), pp.1, 2015![]() Słowa kluczowe: Nanofilaments, hydrogel filaments, nanofibres, long nanoobjects deformability Afiliacje autorów:
| ![]() | ||||||||||||||||||
11. | Pierini F., Nakielski P., Pawłowska S., Zembrzycki K., Kowalewski T.A., Hydrogel nanofilaments via core-shell electrospinning, NanoItaly, Nanotechnology meeting forum for research and market, 2015-09-21/09-24, Roma (IT), pp.1, 2015![]() Streszczenie: Controlled drug delivery systems are used to improve the conventional administration of drugs. One of the main challenges is to synthesize materials able to find a defined target and to release drugs in a controlled manner [1]. Several research tasks have been focused on developing ideal drug delivery systems made by hydrogel due to their unique properties [2]. The present study is based on the idea that soft and flexible nanomaterials can easily travel in crowed environments of body fluids and biological tissues. Modification of their mechanical properties obtained by changing of the cross-linker amount may give us the possibility to tune the material rigidity according to desired application. Here, we describe a novel method based on coaxial electrospinning for obtaining highly flexible hydrogel nanofilaments able to transport and release dedicated molecules. Two different types of hydrogels (poly(N,Nisopropyl acrylamide) and polyacrylamide) with three polymer/cross-linker ratios were produced and deeply studied. The nanofilaments morphology was characterized and the release of bovine serum albumin as a function of time was quantified. Mechanical properties of highly deformable hydrogel nanofilaments were evaluated by bending dynamics and Brownian motion observation techniques. The calculated mechanical properties were compared with data obtained by nanoindention. The results highlight the crucial role of morphology and stiffness on mobility of nanofilaments colloid systems. The information gained are fundamental to design nanoobjects with well-defined chemical and physical behaviour. Słowa kluczowe: Nanofilaments, electrospinning, core-shell method, hydrogel Afiliacje autorów:
| ![]() | ||||||||||||||||||
12. | Kowalewski T.A., Nakielski P., Pierini F., Zembrzycki K., Pawłowska S., Nanoscale challenges of fluid mechanics, PCM-CMM-2015, 3rd Polish Congress of Mechanics and 21st Computer Methods in Mechanics, 2015-09-08/09-11, Gdańsk (PL), pp.11-16, 2015![]() Streszczenie: In this talk we would like to tackle general question of contemporary fluid dynamics, how far its assumption of a continuous, smooth medium remains useful when size and time scales start to approach molecular ones. The question is not trivial and seems to depend on several additional factors usually minored. For example, when full Navier-Stokes equations are replaced by their linear approximation we are loosing basic characteristics of convective motion, and still we use such approach. Once our fluid becomes granular matter with its own internal properties, proper interpretation of flow interactions with other molecular structures probably needs deeper physics. But still we try to convert such problem to the classical macro/micro scale description. Hence a general question arises, how small does a fluid have to be before it is not a fluid anymore? Słowa kluczowe: microfluidics, nanofluids, Brownian motion, nanofilaments Afiliacje autorów:
| ![]() | ||||||||||||||||||
13. | Zembrzycki K., Pierini F., Kowalewski T.A., Optical tweezers to interrogate nano-objects in fluid, KKNM, 4th National Conference on Nano- and Micromechanics, 2014-07-08/07-10, Wrocław (PL), pp.25-26, 2014![]() Słowa kluczowe: nanomanipulation, optical trap, optical tweezers Afiliacje autorów:
| ![]() | ||||||||||||||||||
14. | Pawłowska S., Nakielski P., Hejduk P.♦, Pierini F., Zembrzycki K., Kowalewski T.A., Brownian motion of nanofibers, KKNM, 4th National Conference on Nano- and Micromechanics, 2014-07-08/07-10, Wrocław (PL), pp.162-163, 2014![]() Słowa kluczowe: electrospinning, flexible nanorods, Brownian motion Afiliacje autorów:
| ![]() | ||||||||||||||||||
15. | Pierini F., Hejduk P.♦, Nakielski P., Pawłowska S., Zembrzycki K., Kowalewski T.A., Study of surface interaction forces in polystyrene colloidal nanoparticles systems, XXI FMC, XXI Fluid Mechanics Conference, 2014-06-15/06-18, Kraków (PL), pp.115, 2014![]() Słowa kluczowe: Nanoparticles, polystyrene beads, surface properties, atomic force microscopy, hydrodynamic properties Afiliacje autorów:
| ![]() | ||||||||||||||||||
16. | Pawłowska S., Hejduk P.♦, Nakielski P., Pierini F., Zembrzycki K., Kowalewski T.A., Analysis of nanoparticles hydrodynamic diameters in Brownian motion, XXI FMC, XXI Fluid Mechanics Conference, 2014-06-15/06-18, Kraków (PL), pp.116, 2014![]() Słowa kluczowe: Nanoparticles, Brownian motion, hydrodynamic diameter Afiliacje autorów:
| ![]() | ||||||||||||||||||
17. | Zembrzycki K., Błoński S., Kowalewski T.A., Analysis of wall effect on the process of diffusion of nanopartices in a microchannel, ICTAM XXIII, 23rd International Congress of Theoretical and Applied Mechanics, 2012-08-19/08-24, Beijing (CN), pp.CD-ROM FM10-007, 2012 | ![]() | ||||||||||||||||||
18. | Zembrzycki K., Błoński S., Kowalewski T.A., Analysis of wall effect on the process of diffusion of nanopartices in a microchannel, III National Conference of Nano and Micromechanics, 2012-07-04/07-06, Warszawa (PL), pp.83-84, 2012 | ![]() |
Patenty
Numer/data zgłoszenia patentowego Ogłoszenie o zgłoszeniu patentowym | Twórca / twórcy Tytuł Kraj i Nazwa uprawnionego z patentu | Numer patentu Ogłoszenie o udzieleniu patentu | |
---|---|---|---|
390140 2010-01-07 BUP 15/11 2011-07-18 | Kowalewski T.A., Lamparska D., Zembrzycki K., Kowalczyk T., Sposób wytwarzania mat z nanowłókienPL, Instytut Podstawowych Problemów Techniki PAN | 222733 WUP 08/16 2016-08-31 | ![]() |