Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Mateusz Tokarczyk

Uniwersytet Warszawski (PL)

Ostatnie publikacje
1.  Krajewski M., Tokarczyk M., Lewińska S., Bochenek K., Ślawska-Waniewska A., Impact of thermal oxidation on morphological, structural and magnetic properties of Fe-Ni wire-like nanochains, METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, ISSN: 1073-5623, DOI: 10.1007/s11661-021-06326-1, Vol.52, No.8, pp.3530-3540, 2021

Streszczenie:
This work presents the evolution of morphological, structural and magnetic properties of amorphous Fe-Ni wire-like nanochains caused by thermal oxidation. The initial Fe1−xNix samples (x = 0.75; 0.50; 0.25) were prepared through the magnetic-field-induced synthesis, and then they were heated in dry air at 400 °C and 500 °C. These treatments led to two competing simultaneous processes occurring in the investigated samples, i.e., (i) a conversion of amorphous material into crystalline material, and (ii) their oxidation. Both of them strictly affected the morphological and structural properties of the Fe-Ni nanochains which, in turn, were associated with the amount of iron in material. It was found that the Fe0.75Ni0.25 and Fe0.50Ni0.50 nanochains were covered during thermal treatment by the nanoparticle oxides. This coverage did not constitute a good barrier against oxidation, and these samples became more oxidized than the Fe0.25Ni0.75 sample which was covered by oxide nanosheets and contained additional Ni3B phase. The specific morphological evolutions of the Fe-Ni nanochains also influenced their saturation magnetizations, whereas their coercivities did not vary significantly. The obtained results constitute an important source of information for future application of the thermally treated Fe-Ni nanochains which could be applied in the energy storage devices or catalysis.

Afiliacje autorów:
Krajewski M. - IPPT PAN
Tokarczyk M. - Uniwersytet Warszawski (PL)
Lewińska S. - Institute of Physics, Polish Academy of Sciences (PL)
Bochenek K. - IPPT PAN
Ślawska-Waniewska A. - inna afiliacja
200p.
2.  Krajewski M., Tokarczyk M., Lewińska S., Brzózka K., Bochenek K., Ślawska-Waniewska A., Evolution of structural and magnetic properties of Fe-Co wire-like nanochains caused by annealing atmosphere, Materials, ISSN: 1996-1944, DOI: 10.3390/ma14164748, Vol.14, No.16, pp.4748-1-14, 2021

Streszczenie:
Thermal treatment is a post-synthesis treatment that aims to improve the crystallinity and interrelated physical properties of as-prepared materials. This process may also cause some unwanted changes in materials like their oxidation or contamination. In this work, we present the post-synthesis annealing treatments of the amorphous Fe1−xCox (x = 0.25; 0.50; 0.75) Wire-like nanochains performed at 400 °C in two different atmospheres, i.e., a mixture of 80% nitrogen and 20% hydrogen and argon. These processes caused significantly different changes of structural and magnetic properties of the initially-formed Fe-Co nanostructures. All of them crystallized and their cores were composed of body-centered cubic Fe-Co phase, whereas their oxide shells comprised of a mixture of CoFe2O4 and Fe3O4 phases. However, the annealing carried out in hydrogen-containing atmosphere caused a decomposition of the initial oxide shell layer, whereas a similar process in argon led to its slight thickening. Moreover, it was found that the cores of thermally-treated Fe0.25Co0.75 nanochains contained the hexagonal closest packed (hcp) Co phase and were covered by the nanosheet-like shell layer in the case of annealing performed in argon. Considering the evolution of magnetic properties induced by structural changes, it was observed that the coercivities of annealed Fe-Co nanochains increased in comparison with their non-annealed counterparts. The saturation magnetization (MS) of the Fe0.25Co0.75 nanomaterial annealed in both atmospheres was higher than that for the non-annealed sample. In turn, the MS of the Fe0.75Co0.25 and Fe0.50Co0.50 nanochains annealed in argon were lower than those recorded for non-annealed samples due to their partial oxidation during thermal processing.

Słowa kluczowe:
annealing, amorphous materials, Fe-Co nanochains, magnetic-field-induced synthesis, wire-like nanostructure

Afiliacje autorów:
Krajewski M. - IPPT PAN
Tokarczyk M. - Uniwersytet Warszawski (PL)
Lewińska S. - Institute of Physics, Polish Academy of Sciences (PL)
Brzózka K. - University of Technology and Humanities in Radom (PL)
Bochenek K. - IPPT PAN
Ślawska-Waniewska A. - inna afiliacja
140p.
3.  Krajewski M., Liou S.C., Chiou W.A., Tokarczyk M., Małolepszy A., Płocińska M., Witecka A., Lewińska S., Ślawska-Waniewska A., Amorphous FexCo1–x wire-like nanostructures manufactured through surfactant-free magnetic-field-induced synthesis, Crystal Growth and Design, ISSN: 1528-7483, DOI: 10.1021/acs.cgd.0c00070, Vol.20, No.5, pp.3208-3216, 2020

Streszczenie:
So far, it has been proven that the magnetic-field-induced (MFI) synthesis is a process which mainly leads to the formation of magnetic metallic one-dimensional nanostructures. Taking advantage of this method, the new procedures which allow manufacture of the magnetic bimetallic iron–cobalt wire-like nanochains with Fe0.75 Co0.25, Fe0.50 Co0.50, and Fe0.25 Co0.75 compositions are demonstrated in this work. They were produced through a simple one-step magnetic-field-induced (MFI) chemical co-reduction of three different mixtures containing a proper amount of Fe2+ and Co2+ ions with aqueous sodium borohydride solution as the reducing agent. The synthesis process was carried out at room temperature without the use of templates, surfactants, complexing agents, and organic solvents. The morphological and structural studies indicated that all as-prepared materials were amorphous, and they were composed of nanoparticles aligned in almost straight chains. Moreover, they revealed the core–shell structures with bimetallic alloy cores containing desired iron-to-cobalt ratios and very thin oxide shells. Furthermore, the obtained nanostructures behaved as ferromagnetic materials. Their magnetic properties were correlated with their structural properties and chemical compositions. It was observed that their saturation magnetization decreased significantly with increasing content of cobalt in the chains, whereas the variation of their coercivity was less pronounced.

Afiliacje autorów:
Krajewski M. - IPPT PAN
Liou S.C. - University of Maryland (US)
Chiou W.A. - University of Maryland (US)
Tokarczyk M. - Uniwersytet Warszawski (PL)
Małolepszy A. - Warsaw University of Technology (PL)
Płocińska M. - Warsaw University of Technology (PL)
Witecka A. - IPPT PAN
Lewińska S. - Institute of Physics, Polish Academy of Sciences (PL)
Ślawska-Waniewska A. - inna afiliacja
100p.
4.  Krajewski M., Tokarczyk M., Stefaniuk T., Słomińska H., Małolepszy A., Kowalski G., Lewińska S., Ślawska-Waniewska A., Magnetic-field-induced synthesis of amorphous iron-nickel wire-like nanostructures, MATERIALS CHEMISTRY AND PHYSICS, ISSN: 0254-0584, DOI: 10.1016/j.matchemphys.2020.122812, Vol.246, pp.122812-1-7, 2020

Streszczenie:
Manufacturing process of wire-like binary or ternary metal nanoalloys applying the magnetic-field-induced (MFI) synthesis is still a challenging task. Hence, this work demonstrates for the first time how to produce the iron-nickel wire-like nanostruc-tures with Fe0.75Ni0.25, Fe0.5Ni0.5 and Fe0.25Ni0.75 compositions. In a contrary to the previously reported synthesis of the Fe-Ni wire-like nanomaterials, this process has been carried out at room temperature without employment of templates, surfactants, organic solvents, and other chemical additives. The as-prepared samples exhibit specific structures with the amorphous bimetallic alloy cores covered by thin amorphous oxide shells. Moreover, they are composed of nanoparticles which are aligned in nearly linear chains. The Fe-Ni samples are ferromagnetic materials. Their coercivity values and saturation magnetizations depend on chemical compositions and dimensions of the investigated chains. The highest saturation magnetization and the lowest coercivity is found for the material with the lowest content of nickel and vice versa.

Słowa kluczowe:
amorphous materials, Fe–Ni chains, magnetic-field-induced synthesis, magnetic materials, wire-like nanostructure

Afiliacje autorów:
Krajewski M. - IPPT PAN
Tokarczyk M. - Uniwersytet Warszawski (PL)
Stefaniuk T. - Uniwersytet Warszawski (PL)
Słomińska H. - IPPT PAN
Małolepszy A. - Warsaw University of Technology (PL)
Kowalski G. - Uniwersytet Warszawski (PL)
Lewińska S. - Institute of Physics, Polish Academy of Sciences (PL)
Ślawska-Waniewska A. - inna afiliacja
70p.
5.  Krajewski M., Tokarczyk M., Witecka A., Lewińska S., Ślawska-Waniewska A., Płocińska M., Towards magnetic bimetallic wire-like nanostructures ‒ magnetic field as growth parameter, ACTA PHYSICA POLONICA A, ISSN: 0587-4246, DOI: 10.12693/APhysPolA.137.59, Vol.137, No.1, pp.59-61, 2020

Streszczenie:
The magnetically-assisted growth of the amorphous bimetallic iron–nickel wire-like nanostructures is presented in this work. The applied process is based on a simple reduction reaction of aqueous solutions containing Fe2+ and Ni2+ ions with NaBH4 in the presence of an external magnetic field of about 0.05 T. The morphology, chemical composition, and magnetic properties of as-prepared Fe–Ni nanostructures have been determined by means of scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The obtained experimental data indicate that the as-prepared samples exhibit quite complex architectures i.e., they comprise of nanoparticles aligned in almost straight lines. In addition, they reveal the typical core-shell structures where the amorphous bimetallic alloy cores are covered by thin amorphous oxide shells. In turn, the magnetic measurements show that the Fe–Ni wire-like nanostructures behave as typical ferromagnetic nanomaterials and their magnetic parameters like saturation magnetizations and coercivities are strictly dependent on their sizes and chemical compositions.

Słowa kluczowe:
amorphous materials, bimetallic nanostructures, magnetic-field-induced synthesis, magneticmaterials, wire-like nanostructures

Afiliacje autorów:
Krajewski M. - IPPT PAN
Tokarczyk M. - Uniwersytet Warszawski (PL)
Witecka A. - IPPT PAN
Lewińska S. - Institute of Physics, Polish Academy of Sciences (PL)
Ślawska-Waniewska A. - inna afiliacja
Płocińska M. - Warsaw University of Technology (PL)
40p.
6.  Krajewski M., Liao P.Y., Michalska M., Tokarczyk M., Lin J.Y., Hybrid electrode composed of multiwall carbon nanotubes decorated with magnetite nanoparticles for aqueous supercapacitors, Journal of Energy Storage, ISSN: 2352-152X, DOI: 10.1016/j.est.2019.101020, Vol.26, pp.101020-1-7, 2019

Streszczenie:
This work describes a use of a composite nanomaterial which consists of multiwall carbon nanotubes covered by iron oxide nanoparticles as a hybrid electrode in aqueous supercapacitor. The investigated nanomaterial was manufactured in a two-step simple chemical synthesis in which the first step was a functionalization of carbon nanotubes whereas the second one was the deposition of iron oxide. According the morphological and structural characterization, the carbon nanotubes with diameters of 10–40 nm were successfully covered by randomly-dispersed magnetite nanoparticles with average diameter of 10 nm. Moreover, the thermogravimetric analysis results indicated that the mass ratio between carbon nanotubes and iron oxide nanoparticles was about 65–35%. The electrochemical performance of studied hybrid electrode was tested in 1M aqueous KCl electrolyte. The highest specific capacitance of 143 F g^‒1 was recorded at a discharge current density of 1 A g^‒1. The investigated nanomaterial also exhibited excellent cycling stability i.e. 81% retention of the initial capacitance after 3000 cycles.

Słowa kluczowe:
hybrid electrode, magnetite, multiwall carbon nanotube, nanocomposite, supercapacitor

Afiliacje autorów:
Krajewski M. - IPPT PAN
Liao P.Y. - Tatung University (TW)
Michalska M. - Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL)
Tokarczyk M. - Uniwersytet Warszawski (PL)
Lin J.Y. - Tunghai University (CN)
100p.
7.  Krajewski M., Tokarczyk M., Stefaniuk T., Lewińska S., Ślawska-Waniewska A., Thermal treatment of chains of amorphous Fe1–xCox nanoparticles made by magnetic-field-induced coreduction reaction, IEEE Magnetics Letters, ISSN: 1949-307X, DOI: 10.1109/LMAG.2019.2950644, Vol.10, pp.6108405-1-5, 2019

Streszczenie:
The thermal treatment of chains composed of amorphous Fe 1–x Co x nanoparticles in two different oxygen atmospheres was studied. The nanostructures were manufactured using a magnetic-field-induced coreduction reaction, in which the precursor solutions containing 1:3 and 3:1 proportions of Fe 2+ and Co 2+ ions were reduced with sodium borohydride. The as-prepared nanochains were then heated for 30 min at 400 and 500 °C in dry air or argon containing about 1% oxygen. These processes led to their oxidation, and, as a result, the thermally treated Fe 1–x Co x nanochains were transformed into cobalt ferrite. Heating at 500 °C in the air-containing atmosphere caused the nanomaterials to lose their nanochain structures. In accordance to room-temperature magnetic measurements, the as-prepared and thermally treated Fe 1–x Co x nanochains were ferromagnetic. The highest saturation magnetization (Ms) was measured for the Fe 1–x Co x nanochains treated at 400 °C in dry air (105 A*m^2/kg and 154 A*m^2/kg for Fe 0.25 Co 0.75 and Fe 0.75 Co 0.25, respectively), whereas the lowest Ms was found for the Fe 0.25 Co 0.75 heated at 500 °C in dry air (17 A*m^2/kg) and the Fe 0.75 Co 0.25 heated at 500 °C in argon (16 A*m^2/kg).

Słowa kluczowe:
nanomagnetics, FeCo nanochains, magnetic-field-induced synthesis, thermal treatment

Afiliacje autorów:
Krajewski M. - IPPT PAN
Tokarczyk M. - Uniwersytet Warszawski (PL)
Stefaniuk T. - Uniwersytet Warszawski (PL)
Lewińska S. - Institute of Physics, Polish Academy of Sciences (PL)
Ślawska-Waniewska A. - inna afiliacja
70p.
8.  Krajewski M., Brzozka K., Tokarczyk M., Kowalski G., Lewinska S., Slawska-Waniewska A., Lin W.S., Lin H.M., Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles, Journal of Magnetism and Magnetic Materials, ISSN: 0304-8853, DOI: 10.1016/j.jmmm.2018.03.047, Vol.458, pp.346-354, 2018

Streszczenie:
The main objective of this work is to study the influence of thermal oxidation on the chemical composition and magnetic properties of iron nanoparticles which were manufactured in a simple chemical reduction of Fe3+ ions coming from iron salt with sodium borohydride. The annealing processing was performed in an argon atmosphere containing the traces of oxygen to avoid spontaneous oxidation of iron at temperatures ranging from 200 °C to 800 °C. The chemical composition and magnetic properties of as-prepared and thermally-treated nanoparticles were determined by means of X-ray diffractometry, Raman spectroscopy, Mössbauer spectroscopy and vibrating sample magnetometry. Due to the magnetic interactions, the investigated iron nanoparticles tended to create the dense aggregates which were difficult to split even at low temperatures. This caused that there was no empty space between them, which led to their partial sintering at elevated temperatures. These features hindered their precise morphological observations using the electron microscopy techniques. The obtained results show that the annealing process up to 800 °C resulted in a progressive change in the chemical composition of as-prepared iron nanoparticles which was associated with their oxidation. As a consequence, their magnetic properties also depended on the annealing temperature. For instance, considering the values of saturation magnetization, its highest value was recorded for the as-prepared nanoparticles at 1 T and it equals 149 emu/g, while the saturation point for nanoparticles treated at 600 °C and higher temperatures was not reached even at the magnetic field of about 5 T. Moreover, a significant enhancement of coercivity was observed for the iron nanoparticles annealed over 600 °C.

Słowa kluczowe:
Chemical composition, Chemical reduction, Iron nanoparticle, Magnetic properties, Oxidation

Afiliacje autorów:
Krajewski M. - IPPT PAN
Brzozka K. - University of Technology and Humanities in Radom (PL)
Tokarczyk M. - Uniwersytet Warszawski (PL)
Kowalski G. - Uniwersytet Warszawski (PL)
Lewinska S. - Institute of Physics, Polish Academy of Sciences (PL)
Slawska-Waniewska A. - Institute of Physics, Polish Academy of Sciences (PL)
Lin W.S. - Tatung University (TW)
Lin H.M. - Tatung University (TW)
30p.
9.  Krajewski M., Lee P.H., Wu S.H., Brzózka K., Małolepszy A., Stobiński L., Tokarczyk M., Kowalski G., Wąsik D., Nanocomposite composed of multiwall carbon nanotubes covered by hematite nanoparticles as anode material for Li-ion batteries, Electrochimica Acta, ISSN: 0013-4686, DOI: 10.1016/j.electacta.2017.01.051, Vol.228, pp.82-90, 2017

Streszczenie:
This work describes the detailed studies performed on the nanocomposite composed of chemically-modified multiwall carbon nanotubes covered by hematite nanoparticles which diameters vary from 10 nm to 70 nm. This nanomaterial was fabricated in two-steps facile chemical synthesis and was characterized with the use of several experimental techniques, such as: thermogravimetric analysis, differential thermal analysis, Raman spectroscopy, X-ray diffraction, and transmission Mössbauer spectroscopy in order to determine its structure precisely. Moreover, the investigated nanocomposite was tested as an anode material of Li-ion batteries. Its cycling performance was stable during 40 cycles, while its capacity was retained at the level of 330 and 230 mAh/g at the discharge/charge rate of 25 and 200 mA/g, respectively.

Słowa kluczowe:
anode material, hematite, Li-ion battery, multiwall carbon nanotube, nanocomposite

Afiliacje autorów:
Krajewski M. - IPPT PAN
Lee P.H. - Tatung University (TW)
Wu S.H. - Tatung University (TW)
Brzózka K. - University of Technology and Humanities in Radom (PL)
Małolepszy A. - Warsaw University of Technology (PL)
Stobiński L. - Warsaw University of Technology (PL)
Tokarczyk M. - Uniwersytet Warszawski (PL)
Kowalski G. - Uniwersytet Warszawski (PL)
Wąsik D. - inna afiliacja
40p.
10.  Krajewski M., Brzózka K., Lin W.S., Lin H.M., Tokarczyk M., Borysiuk J., Kowalski G., Wasik D., High temperature oxidation of iron–iron oxide core–shell nanowires composed of iron nanoparticles, Physical Chemistry Chemical Physics, ISSN: 1463-9076, DOI: 10.1039/c5cp07569f, Vol.18, pp.3900-3909, 2016

Streszczenie:
This work describes an oxidation process of iron–iron oxide core–shell nanowires at temperatures between 100°C and 800°C. The studied nanomaterial was synthesized through a simple chemical reduction of iron trichloride in an external magnetic field under a constant flow of argon. The electron microscopy investigations allowed determining that the as-prepared nanowires were composed of self-assembled iron nanoparticles which were covered by a 3 nm thick oxide shell and separated from each other by a thin interface layer. Both these layers exhibited an amorphous or highly-disordered character which was traced by means of transmission electron microscopy and Mössbauer spectroscopy. The thermal oxidation was carried out under a constant flow of argon which contained the traces of oxygen. The first stage of process was related to slow transformations of amorphous Fe and amorphous iron oxides into crystalline phases and disappearance of interfaces between iron nanoparticles forming the studied nanomaterial (range: 25–300°C). After that, the crystalline iron core and iron oxide shell became oxidized and signals for different compositions of iron oxide sheath were observed (range: 300–800°C) using X-ray diffraction, Raman spectroscopy and Mössbauer spectroscopy. According to the thermal gravimetric analysis, the nanowires heated up to 800°C under argon atmosphere gained 37% of mass with respect to their initial weight. The structure of the studied nanomaterial oxidized at 800°C was mainly composed of α-Fe2O3 (∼93%). Moreover, iron nanowires treated above 600°C lost their wire-like shape due to their shrinkage and collapse caused by the void coalescence.

Słowa kluczowe:
annealing, core-shell nanostructure, iron nanoparticles, iron nanowires, oxidation, thermal treatment

Afiliacje autorów:
Krajewski M. - inna afiliacja
Brzózka K. - University of Technology and Humanities in Radom (PL)
Lin W.S. - Tatung University (TW)
Lin H.M. - Tatung University (TW)
Tokarczyk M. - Uniwersytet Warszawski (PL)
Borysiuk J. - Uniwersytet Warszawski (PL)
Kowalski G. - Uniwersytet Warszawski (PL)
Wasik D. - Uniwersytet Warszawski (PL)
40p.
11.  Krajewski M., Lin W.S., Lin H.M., Tokarczyk M., Lewińska S., Nedelko N., Ślawska-Waniewska A., Kowalski G., Borysiuk J., Wasik D., High temperature annealing of iron nanowires, PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, ISSN: 1862-6300, DOI: 10.1002/pssa.201431843, Vol.212, No.4, pp.862-866, 2015

Streszczenie:
This work presents the results of high temperature annealing of iron nanowires at five different temperatures (ranging 200–800 °C) in the slightly oxidative atmosphere. Investigated nanomaterial was prepared in simple chemical reduction process from aqueous solution of iron trichloride placed in external magnetic field. Experimental results allowed determining how magnetic properties of as-prepared as well as annealed iron nanowires change in respect to their structures. They also delivered information about phase transitions occurred in as-prepared sample under thermal treatment.

Słowa kluczowe:
annealing, iron, magnetic properties, nanowires

Afiliacje autorów:
Krajewski M. - inna afiliacja
Lin W.S. - Tatung University (TW)
Lin H.M. - Tatung University (TW)
Tokarczyk M. - Uniwersytet Warszawski (PL)
Lewińska S. - Institute of Physics, Polish Academy of Sciences (PL)
Nedelko N. - Institute of Physics, Polish Academy of Sciences (PL)
Ślawska-Waniewska A. - inna afiliacja
Kowalski G. - Uniwersytet Warszawski (PL)
Borysiuk J. - Uniwersytet Warszawski (PL)
Wasik D. - Uniwersytet Warszawski (PL)
25p.
12.  Krajewski M., Małolepszy A., Stobiński L., Lewińska S., Ślawska-Waniewska A., Tokarczyk M., Kowalski G., Borysiuk J., Wasik D., Preparation and Characterization of Hematite-Multiwall Carbon Nanotubes Nanocomposite, Journal of Superconductivity and Novel Magnetism, ISSN: 1557-1939, DOI: 10.1007/s10948-014-2794-7, Vol.28, No.3, pp.901-904, 2015

Streszczenie:
The aim of this work is to study the preparation and characterization of a new nanocomposite which consists of chemically-modified multiwall carbon nanotubes covered by randomly-deposited nanoparticles of hematite. The morphology, structural and physical properties of the investigated nanomaterial were determined by means of transmission electron microscopy, X-ray diffraction and vibrating sample magnetometry at ambient conditions. The presence of residual catalyst nanospheres inside multiwall carbon nanotubes was confirmed by transmission electron microscopy. The signal coming from this contamination was under the detection limit of X-ray diffractometer, therefore it was not registered.

Słowa kluczowe:
Hematite, Multiwall carbon nanotubes, CVD, TEM, XRD, VSM

Afiliacje autorów:
Krajewski M. - inna afiliacja
Małolepszy A. - Warsaw University of Technology (PL)
Stobiński L. - Warsaw University of Technology (PL)
Lewińska S. - Institute of Physics, Polish Academy of Sciences (PL)
Ślawska-Waniewska A. - inna afiliacja
Tokarczyk M. - Uniwersytet Warszawski (PL)
Kowalski G. - Uniwersytet Warszawski (PL)
Borysiuk J. - Uniwersytet Warszawski (PL)
Wasik D. - Uniwersytet Warszawski (PL)
15p.

Prace konferencyjne
1.  Krajewski M., Tokarczyk M., Witecka A., Lewińska S., Ślawska-Waniewska A., Małolepszy A., Liou S.C., Chiou W.A., Manufacturing and magnetic properties of FexCo1‒x wire-like nanoalloys, CNM 2019, 6th CONFERENCE ON NANO- AND MICROMECHANICS, 2019-07-03/07-05, Rzeszów (PL), pp.103-104, 2019

Słowa kluczowe:
magnetic-field-induced process, magnetic material, nanoalloy, wire-like nanostructure

Afiliacje autorów:
Krajewski M. - IPPT PAN
Tokarczyk M. - Uniwersytet Warszawski (PL)
Witecka A. - IPPT PAN
Lewińska S. - Institute of Physics, Polish Academy of Sciences (PL)
Ślawska-Waniewska A. - inna afiliacja
Małolepszy A. - Warsaw University of Technology (PL)
Liou S.C. - University of Maryland (US)
Chiou W.A. - University of Maryland (US)
2.  Liou S.C., Krajewski M., Chiou W.A., Tokarczyk M., Kowalski G., TEM Studies of Fe1-xNix Nanowires by Magnetic-Field-Induced Synthesis, M&M 2019, Microscopy & Microanalysis 2019, 2019-08-04/08-08, Portland (US), DOI: 10.1017/S143192761901170X, No.25, pp.2194-2195, 2019

Abstrakty konferencyjne
1.  Krajewski M., Tokarczyk M., Stefaniuk T., Kowalski G., Lewińska S., Ślawska-Waniewska A., High temperature treatment of nanochains composed of Fe1‒xCox nanoparticles, IBCM 2019, III International Baltic Conference on Magnetism: focus on nanobiomedicine and smart materials, 2019-08-18/08-22, Svetlogorsk (RU), pp.52-52, 2019
2.  Krajewski M., Tokarczyk M., Witecka A., Lewińska S., Ślawska-Waniewska A., Liou S.C., Chiou W.A., Płocińska M., Towards magnetic 1D nanostructures - magnetic field as a growth parameter, LIV Zakopane School of Physics Breaking Frontiers: Submicron Structures in Physics and Biology, 2019-05-21/05-25, Zakopane (PL), pp.42-42, 2019
3.  Krajewski M., Tokarczyk M., Kowalski G., Witecka A., Magnetic-field-induced synthesis of bimetallic wire-like nanostructures, NANOSMAT, 13th International Conference on Surfaces, Coatings and Nanostructured Materials, 2018-09-11/09-14, Gdańsk (PL), No.107, pp.55-56, 2018

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2021