Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk


T. Reich

Ostatnie publikacje
1.  Jeznach O., Kołbuk D., Reich T., Sajkiewicz P., Immobilization of Gelatin on Fibers for Tissue Engineering Applications: A Comparative Study of Three Aliphatic Polyesters, Polymers, ISSN: 2073-4360, DOI: 10.3390/polym14194154, Vol.14, No.19, pp.4154-1-21, 2022

Immobilization of cell adhesive proteins on the scaffold surface has become a widely reported method that can improve the interaction between scaffold and cells. In this study, three nanofibrous scaffolds obtained by electrospinning of poly(caprolactone) (PCL), poly(L-lactide-co-caprolactone) (PLCL) 70:30, or poly(L-lactide) (PLLA) were subjected to chemical immobilization of gelatin based on aminolysis and glutaraldehyde cross-linking, as well as physisorption of gelatin. Two sets of aminolysis conditions were applied to evaluate the impact of amine group content. Based on the results of the colorimetric bicinchoninic acid (BCA) assay, it was shown that the concentration of gelatin on the surface is higher for the chemical modification and increases with the concentration of free NH2 groups. XPS (X-ray photoelectron spectroscopy) analysis confirmed this outcome. On the basis of XPS results, the thickness of the gelatin layer was estimated to be less than 10 nm. Initially, hydrophobic scaffolds are completely wettable after coating with gelatin, and the time of waterdrop absorption was correlated with the surface concentration of gelatin. In the case of all physically and mildly chemically modified samples, the decrease in stress and strain at break was relatively low, contrary to strongly aminolyzed PLCL and PLLA samples. Incubation testing performed on the PCL samples showed that a chemically immobilized gelatin layer is more stable than a physisorbed one; however, even after 90 days, more than 60% of the initial gelatin concentration was still present on the surface of physically modified samples. Mouse fibroblast L929 cell culture on modified samples indicates a positive effect of both physical and chemical modification on cell morphology. In the case of PCL and PLCL, the best morphology, characterized by stretched filopodia, was observed after stronger chemical modification, while for PLLA, there was no significant difference between modified samples. Results of metabolic activity indicate the better effect of chemical immobilization than of physisorption of gelatin.

Słowa kluczowe:
gelatin, aminolysis, surface modification, electrospinning

Afiliacje autorów:
Jeznach O. - IPPT PAN
Kołbuk D. - IPPT PAN
Reich T. - inna afiliacja
Sajkiewicz P. - IPPT PAN

Abstrakty konferencyjne
1.  Jeznach O., Sajkiewicz P., Kołbuk-Konieczny D., Reich T., Dulnik J., GELATIN IMMOBILIZATION ON ELECTROSPUN ALIPHATIC POLYESTER FIBERS FOR TISSUE ENGINEERING, TERMIS EU 2022, Tissue Engineering and Regenerative Medicine International Society (TERMIS) European Chapter Conference 2022, 2022-06-28/07-01, Kraków (PL), pp.859-860, 2022

Kategoria A Plus


logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15

Znajdź nas

© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2023