Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk


Tommaso Ruggeri

University of Bologna (IT)

Ostatnie publikacje
1.  Banach Z., Larecki W., Ruggeri T., Dispersion relation in the limit of high frequency for a hyperbolic system with multiple eigenvalues, WAVE MOTION, ISSN: 0165-2125, DOI: 10.1016/j.wavemoti.2014.03.008, Vol.51, pp.955-966, 2014

The results of a previous paper (Muracchini et al., 1992) are generalized by considering a hyperbolic system in one space dimension with multiple eigenvalues. The dispersion relation for linear plane waves in the high-frequency limit is analyzed and the recurrence formulas for the phase velocity and the attenuation factor are derived in terms of the coefficients of a formal series expansion in powers of the reciprocal of frequency. In the case of multiple eigenvalues, it is also verified that linear stability implies λ-stability for the waves of weak discontinuity. Moreover, for the linearized system, the relationship between entropy and stability is studied. When the nonzero eigenvalue is simple, the results of the paper mentioned above are recovered. In order to illustrate the procedure, an example of the linear hyperbolic system is presented in which, depending on the values of parameters, the multiplicity of nonzero eigenvalues is either one or two. This example describes the dynamics of a mixture of two interacting phonon gases.

Słowa kluczowe:
Hyperbolic system, Multiple eigenvalue, Linearization, Harmonic wave, Dispersion relation, Weak discontinuity

Afiliacje autorów:
Banach Z. - IPPT PAN
Larecki W. - IPPT PAN
Ruggeri T. - University of Bologna (IT)

Kategoria A Plus


logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15

Znajdź nas

© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024