Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Pracownicy

mgr Dominik Bogucki

Zakład Technologii Inteligentnych (ZTI)
doktorant
telefon: (+48) 22 826 12 81 wewn.: 160
pokój: 028
e-mail:

Ostatnie publikacje
1.  Tauzowski P., Ostrowski M., Bogucki D., Jarosik P., Błachowski B., Structural Component Identification and Damage Localization of Civil Infrastructure Using Semantic Segmentation, SENSORS, ISSN: 1424-8220, DOI: 10.3390/s25154698, Vol.25, No.15, pp.4698--, 2025

Streszczenie:
Visual inspection of civil infrastructure for structural health assessment, as performed by structural engineers, is expensive and time-consuming. Therefore, automating this process is highly attractive, which has received significant attention in recent years. With the increasing capabilities of computers, deep neural networks have become a standard tool and can be used for structural health inspections. A key challenge, however, is the availability of reliable datasets. In this work, the U-net and DeepLab v3+ convolutional neural networks are trained on a synthetic Tokaido dataset. This dataset comprises images representative of data acquired by unmanned aerial vehicle (UAV) imagery and corresponding ground truth data. The data includes semantic segmentation masks for both categorizing structural elements (slabs, beams, and columns) and assessing structural damage (concrete spalling or exposed rebars). Data augmentation, including both image quality degradation (e.g., brightness modification, added noise) and image transformations (e.g., image flipping), is applied to the synthetic dataset. The selected neural network architectures achieve excellent performance, reaching values of 97% for accuracy and 87% for Mean Intersection over Union (mIoU) on the validation data. It also demonstrates promising results in the semantic segmentation of real-world structures captured in photographs, despite being trained solely on synthetic data. Additionally, based on the obtained results of semantic segmentation, it can be concluded that DeepLabV3+ outperforms U-net in structural component identification. However, this is not the case in the damage identification task.

Słowa kluczowe:
semantic segmentation, structural health monitoring, computer vision-based techniques

Afiliacje autorów:
Tauzowski P. - IPPT PAN
Ostrowski M. - IPPT PAN
Bogucki D. - IPPT PAN
Jarosik P. - IPPT PAN
Błachowski B. - IPPT PAN
100p.
2.  Niedzielewski K., Bartczuk R., Bielczyk N., Bogucki D. J., Dreger F., Dudziuk G., Górski Ł., Gruziel-Słomka M., Haman J., Kaczorek A., Kisielewski J., Krupa B., Moszyński A., Nowosielski J., Radwan M., Semeniuk M., Tymoszuk U., Zieliński J., Rakowski F., Forecasting SARS-CoV-2 epidemic dynamic in Poland with the pDyn agent-based model, Epidemics, ISSN: 1755-4365, DOI: 10.1016/j.epidem.2024.100801, Vol.49, No.100801, pp.1-31, 2024

Streszczenie:
We employ pDyn (derived from ‘‘pandemics dynamics’’), an agent-based epidemiological model, to forecast the fourth wave of the SARS-CoV-2 epidemic, primarily driven by the Delta variant, in Polish society. The model captures spatiotemporal dynamics of the epidemic spread, predicting disease-related states based on pathogen properties and behavioral factors. We assess pDyn’s validity, encompassing pathogen variant succession, immunization level, and the proportion of vaccinated among confirmed cases. We evaluate its predictive capacity for pandemic dynamics, including wave peak timing, magnitude, and duration for confirmed cases, hospitalizations, ICU admissions, and deaths, nationally and regionally in Poland. Validation involves comparing pDyn’s estimates with real-world data (excluding data used for calibration) to evaluate whether pDyn accurately reproduced the epidemic dynamics up to the simulation time. To assess the accuracy of pDyn’s predictions, we compared simulation results with real-world data acquired after the simulation date. The findings affirm pDyn’s accuracy in forecasting and enhancing our understanding of epidemic mechanisms.

Słowa kluczowe:
Epidemic dynamics , Epidemiology, Agent-based model, COVID-19

Afiliacje autorów:
Niedzielewski K. - inna afiliacja
Bartczuk R. - inna afiliacja
Bielczyk N. - inna afiliacja
Bogucki D. J. - IPPT PAN
Dreger F. - inna afiliacja
Dudziuk G. - inna afiliacja
Górski Ł. - inna afiliacja
Gruziel-Słomka M. - inna afiliacja
Haman J. - inna afiliacja
Kaczorek A. - inna afiliacja
Kisielewski J. - inna afiliacja
Krupa B. - inna afiliacja
Moszyński A. - inna afiliacja
Nowosielski J. - inna afiliacja
Radwan M. - inna afiliacja
Semeniuk M. - inna afiliacja
Tymoszuk U. - inna afiliacja
Zieliński J. - Heller Consult sp. z o. o. (PL)
Rakowski F. - inna afiliacja
100p.

Prace konferencyjne
1.  Bogucki D.J., Lepak L., Parashar S., Błachowski B., Wawrzyński P., EnEnv 1.0: Energy Grid Environment for Multi-Agent Reinforcement Learning Benchmarking, AAMAS 2025, The 24th International Conference on Autonomous Agents and Multiagent Systems , 2025-05-19/05-23, Detroit (US), pp.361-370, 2025

Słowa kluczowe:
Multi-Agent Reinforcement Learning; Energy Grid; Battery Energy Storage System

Afiliacje autorów:
Bogucki D.J. - IPPT PAN
Lepak L. - inna afiliacja
Parashar S. - inna afiliacja
Błachowski B. - IPPT PAN
Wawrzyński P. - inna afiliacja
200p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2025