Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Witold Konopka

Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)

Ostatnie publikacje
1.  Zdioruk M., Want A., Mietelska-Porowska A., Laskowska-Kaszub K., Wojsiat J., Klejman A., Użarowska E., Koza P., Olejniczak S., Pikul S., Konopka W., Golab J., Wojda U., A new inhibitor of tubulin polymerization kills multiple cancer cell types and reveals p21-mediated mechanism determining cell death after mitotic catastrophe, Cancers, ISSN: 2072-6694, DOI: 10.3390/cancers12082161, Vol.12, No.8, pp.2161-1-21, 2020

Streszczenie:
Induction of mitotic catastrophe through the disruption of microtubules is an established target in cancer therapy. However, the molecular mechanisms determining the mitotic catastrophe and the following apoptotic or non-apoptotic cell death remain poorly understood. Moreover, many existing drugs targeting tubulin, such as vincristine, have reduced efficacy, resulting from poor solubility in physiological conditions. Here, we introduce a novel small molecule 2-aminoimidazoline derivative-OAT-449, a synthetic water-soluble tubulin inhibitor. OAT-449 in a concentration range from 6 to 30 nM causes cell death of eight different cancer cell lines in vitro, and significantly inhibits tumor development in such xenograft models as HT-29 (colorectal adenocarcinoma) and SK-N-MC (neuroepithelioma) in vivo. Mechanistic studies showed that OAT-449, like vincristine, inhibited tubulin polymerization and induced profound multi-nucleation and mitotic catastrophe in cancer cells. HeLa and HT-29 cells within 24 h of treatment arrested in G2/M cell cycle phase, presenting mitotic catastrophe features, and 24 h later died by non-apoptotic cell death. In HT-29 cells, both agents altered phosphorylation status of Cdk1 and of spindle assembly checkpoint proteins NuMa and Aurora B, while G2/M arrest and apoptosis blocking was consistent with p53-independent accumulation in the nucleus and largely in the cytoplasm of p21/waf1/cip1, a key determinant of cell fate programs. This is the first common mechanism for the two microtubule-dissociating agents, vincristine and OAT-449, determining the cell death pathway following mitotic catastrophe demonstrated in HT-29 cells.

Słowa kluczowe:
cancer, chemotherapeutic, microtubule-poison, vincristine, mitotic catastrophe, non-apoptotic cell death, p21, p53

Afiliacje autorów:
Zdioruk M. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Want A. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Mietelska-Porowska A. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Laskowska-Kaszub K. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Wojsiat J. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Klejman A. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Użarowska E. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Koza P. - inna afiliacja
Olejniczak S. - OncoArendi Therapeutics (PL)
Pikul S. - OncoArendi Therapeutics (PL)
Konopka W. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Golab J. - Medical University of Warsaw (PL)
Wojda U. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
140p.
2.  Koza P., Przybyś J., Klejman A., Olech-Kochańczyk G., Konopka W., Generation of transgenic rats using a lentiviral vector approach, Journal of Visualized Experiments, ISSN: 1940-087X, DOI: 10.3791/60570, Vol.159, pp.e60570-1-8, 2020

Streszczenie:
Transgenic animal models are fundamentally important for modern biomedical research. The incorporation of foreign genes into early mouse or rat embryos is an invaluable tool for gene function analysis in living organisms. The standard transgenesis method is based on microinjecting foreign DNA fragments into a pronucleus of a fertilized oocyte. This technique is widely used in mice but remains relatively inefficient and technically demanding in other animal species. The transgene can also be introduced into one-cell-stage embryos via lentiviral infection, providing an effective alternative to standard pronuclear injections, especially in species or strains with a more challenging embryo structure. In this approach, a suspension that contains lentiviral vectors is injected into the perivitelline space of a fertilized rat embryo, which is technically less demanding and has a higher success rate. Lentiviral vectors were shown to efficiently incorporate the transgene into the genome to determine the generation of stable transgenic lines. Despite some limitations (e.g., Biosafety Level 2 requirements, DNA fragment size limits), lentiviral transgenesis is a rapid and efficient transgenesis method. Additionally, using female rats that are mated with a fertile male strain with a different dominant fur color is presented as an alternative to generate pseudopregnant foster mothers.

Słowa kluczowe:
retraction, issue 159, transgenic rat, lentiviral vectors, perivitelline space, foster mothers

Afiliacje autorów:
Koza P. - inna afiliacja
Przybyś J. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Klejman A. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Olech-Kochańczyk G. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Konopka W. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
70p.
3.  Koza P., Beroun A., Konopka A., Górkiewicz T., Bijoch Ł., Torres J.C., Bulska E., Knapska E., Kaczmarek L., Konopka W., Neuronal TDP-43 depletion affects activity-dependent plasticity, Neurobiology of Disease, ISSN: 0969-9961, DOI: 10.1016/j.nbd.2019.104499, Vol.130, pp.104499-1-12, 2019

Streszczenie:
TAR DNA-binding protein 43 (TDP-43) is a hallmark of some neurodegenerative disorders, such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43-related pathology is characterized by its abnormally phosphorylated and ubiquitinated aggregates. It is involved in many aspects of RNA processing, including mRNA splicing, transport, and translation. However, its exact physiological function and role in mechanisms that lead to neuronal degeneration remain elusive. Transgenic rats that were characterized by TDP-43 depletion in neurons exhibited enhancement of the acquisition of fear memory. At the cellular level, TDP-43-depleted neurons exhibited a decrease in the short-term plasticity of intrinsic neuronal excitability. The induction of long-term potentiation in the CA3-CA1 areas of the hippocampus resulted in more stable synaptic enhancement. At the molecular level, the protein levels of an unedited (R) FLOP variant of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluR1 and GluR2/3 subunits decreased in the hippocampus. Alterations of FLOP/FLIP subunit composition affected AMPAR kinetics, reflected by cyclothiazide-dependent slowing of the decay time of AMPAR-mediated miniature excitatory postsynaptic currents. These findings suggest that TDP-43 may regulate activity-dependent neuronal plasticity, possibly by regulating the splicing of genes that are responsible for fast synaptic transmission and membrane potential.

Słowa kluczowe:
TDP-43, AMPA receptors, FLOP/FLIP splice variants, PTZ model

Afiliacje autorów:
Koza P. - inna afiliacja
Beroun A. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Konopka A. - Uniwersytet Warszawski (PL)
Górkiewicz T. - inna afiliacja
Bijoch Ł. - inna afiliacja
Torres J.C. - inna afiliacja
Bulska E. - inna afiliacja
Knapska E. - inna afiliacja
Kaczmarek L. - inna afiliacja
Konopka W. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
100p.
4.  Stefaniuk M., Gualda E.J., Pawlowska M., Legutko D., Matryba P., Koza P., Konopka W., Owczarek D., Wawrzyniak M., Loza-Alvarez P., Kaczmarek L., Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene, Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/srep28209, Vol.6, pp.28209-1-9, 2016

Streszczenie:
Whole-brain imaging with light-sheet fluorescence microscopy and optically cleared tissue is a new, rapidly developing research field. Whereas successful attempts to clear and image mouse brain have been reported, a similar result for rats has proven difficult to achieve. Herein, we report on creating novel transgenic rat harboring fluorescent reporter GFP under control of neuronal gene promoter. We then present data on clearing the rat brain, showing that FluoClearBABB was found superior over passive CLARITY and CUBIC methods. Finally, we demonstrate efficient imaging of the rat brain using light-sheet fluorescence microscopy.

Afiliacje autorów:
Stefaniuk M. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Gualda E.J. - Barcelona Institute of Science and Technology (ES)
Pawlowska M. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Legutko D. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Matryba P. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Koza P. - inna afiliacja
Konopka W. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Owczarek D. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Wawrzyniak M. - Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL)
Loza-Alvarez P. - Barcelona Institute of Science and Technology (ES)
Kaczmarek L. - inna afiliacja
40p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024