Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Michał Woźniak, PhD

Warsaw University of Technology (PL)


Recent publications
1.  Woźniak M., Chlanda A., Oberbek P., Heljak M., Czarnecka K., Janeta M., John Ł., Binary bioactive glass composite scaffolds for bone tissue engineering — structure and mechanical properties in micro and nano scale. A preliminary study, Micron, ISSN: 0968-4328, DOI: 10.1016/j.micron.2018.12.006, Vol.119, pp.64-71, 2019

Abstract:
Composite scaffolds of bioactive glass (SiO2-CaO) and bioresorbable polyesters: poly-L-lactic acid (PLLA) and polycaprolactone (PCL) were produced by polymer coating of porous foams. Their structure and mechanical properties were investigated in micro and nanoscale, by the means of scanning electron microscopy, PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) atomic force microscopy, micro-computed tomography and contact angle measurements. This is one of the first studies in which the nanomechanical properties (elastic modulus, adhesion) were measured and mapped simultaneously with topography imaging (PF-QNM AFM) for bioactive glass and bioactive glass – polymer coated scaffolds. Our findings show that polymer coated scaffolds had higher average roughness and lower stiffness in comparison to pure bioactive glass scaffolds. Such coating-dependent scaffold properties may promote different cells-scaffold interaction.

Keywords:
bone tissue engineering, composite scaffold, bioactive glass, mmechanical properties

Affiliations:
Woźniak M. - Warsaw University of Technology (PL)
Chlanda A. - Warsaw University of Technology (PL)
Oberbek P. - Warsaw University of Technology (PL)
Heljak M. - Warsaw University of Technology (PL)
Czarnecka K. - IPPT PAN
Janeta M. - University of Wrocław (PL)
John Ł. - University of Wrocław (PL)
2.  Chlanda A., Oberbek P., Heljak M., Górecka Ż., Czarnecka K., Chen K.-S., Woźniak M.J., Nanohydroxyapatite adhesion to low temperature plasma modified surface of 3D-printed bone tissue engineering scaffolds - qualitative and quantitative study, SURFACE AND COATINGS TECHNOLOGY, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2019.07.070, Vol.375, pp.637-644, 2019

Abstract:
Biodegradable 3D-printed polycaprolactone scaffolds for bone tissue engineering applications have been extensively studied as they can provide an attractive porous architecture mimicking natural bone, with tunable physical and mechanical properties enhancing positive cellular response. The main drawbacks of polycaprolactone-based scaffolds, limiting their applications in tissue engineering are: their hydrophobic nature, low bioactivity and poor mechanical properties compared to native bone tissue. To overcome these issues, the surface of scaffolds is usually modified and covered with a ceramic layer. However, a detailed description of the adhesion forces of ceramic particles to the polymer surface of the scaffolds is still lacking. Our present work is focused on obtaining PCL-based composite scaffolds to strengthen the architecture of the final product. In this manuscript, we report qualitative and quantitative evaluation of low temperature plasma modification followed by detailed studies of the adhesion forces between chemically attached ceramic layer and the surface of polycaprolactone-nanohydroxyapatite composite 3D-printed scaffolds. The results suggest modification-dependent alteration of the internal structure and morphology, as well as mechanical and physical scaffold properties recorded with atomic force microscopy. Moreover, changes in the material surface were followed by enhanced adhesion forces binding the ceramic layer to polymer-based scaffolds.

Keywords:
surface modification, low temperature plasma, atomic force microscopy, bone tissue engineering

Affiliations:
Chlanda A. - Warsaw University of Technology (PL)
Oberbek P. - Warsaw University of Technology (PL)
Heljak M. - Warsaw University of Technology (PL)
Górecka Ż. - Warsaw University of Technology (PL)
Czarnecka K. - IPPT PAN
Chen K.-S. - Tatung University (TW)
Woźniak M.J. - Warsaw University of Technology (PL)
3.  Woźniak Cz., Woźniak M., Modelowanie w dynamice kompozytów - Teoria i zastosowanie, Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.25, pp.1-158, 1995
4.  Woźniak M., Równowaga graniczna skarp ziemnych próba rozwiązywania zagadnień przestrzennych (Praca doktorska), Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.64, pp.1-67, 1975

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2021