Institute of Fundamental Technological Research
Polish Academy of Sciences


Piotr Jenczyk, MSc

Department of Mechanics of Materials (ZMM)
Division of Surface Layers (PWW)
position: specialist
telephone: (+48) 22 826 12 81 ext.: 149
room: 231

Recent publications
1.  Grzywacz H., Milczarek M., Jenczyk P., Dera W., Michałowski M., Jarząbek D.M., Quantitative measurement of nanofriction between PMMA thin films and various AFM probes, MEASUREMENT, ISSN: 0263-2241, DOI: 10.1016/j.measurement.2020.108267, Vol.168, pp.108267-1-13, 2020

This study reports the quantitative, precise and accurate results of nanoscale friction measurements with the use of an Atomic Force Microscope calibrated with a precise nanoforce sensor. For this purpose, three samples of spin-coated thin Polymethylmethacrylate (PMMA) films were prepared with the following thicknesses: 235, 343, and 513 nm. Three different AFM probes were used for the friction measurements: with diamond-like carbon (DLC) tip with a small (15 nm) or big (2 µm) tip radius, and a reference silicon tip with a small (8 nm) radius. The results show that in all of the studied cases, the coefficient of friction strongly depends on the applied load, being much higher for a lower load. Furthermore, a strong relation of the friction force on the cantilever's geometry, the scanning velocity, and the film thickness was observed.

lateral force microscopy, friction, thin PMMA films, atomic force microscope, DLC coatings, adhesion

Grzywacz H. - other affiliation
Milczarek M. - IPPT PAN
Jenczyk P. - IPPT PAN
Dera W. - IPPT PAN
Michałowski M. - Warsaw University of Technology (PL)
Jarząbek D.M. - other affiliation
2.  Alvi S., Jarząbek D.M., Kohan M.G., Hedman D., Jenczyk P., Natile M.M., Vomiero A., Akhtar F., Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c02156, Vol.12, No.18, pp.21070-21079, 2020

Development of high-entropy alloy (HEA) films is a promising and cost-effective way to incorporate these materials of superior properties in harsh environments. In this work, a refractory high-entropy alloy (RHEA) film of equimolar CuMoTaWV was deposited on silicon and 304 stainless-steel substrates using DC-magnetron sputtering. A sputtering target was developed by partial sintering of an equimolar powder mixture of Cu, Mo, Ta, W, and V using spark plasma sintering. The target was used to sputter a nanocrystalline RHEA film with a thickness of ~900 nm and an average grain size of 18 nm. X-ray diffraction of the film revealed a body-centered cubic solid solution with preferred orientation in the (110) directional plane. The nanocrystalline nature of the RHEA film resulted in a hardness of 19 ± 2.3 GPa and an elastic modulus of 259 ± 19.2 GPa. A high compressive strength of 10 ± 0.8 GPa was obtained in nanopillar compression due to solid solution hardening and grain boundary strengthening. The adhesion between the RHEA film and 304 stainless-steel substrates was increased on annealing. For the wear test against the E52100 alloy steel (Grade 25, 700-880 HV) at 1 N load, the RHEA film showed an average coefficient of friction (COF) and wear rate of 0.25 (RT) and 1.5 (300 °C), and 6.4 × 10^–6 mm^3/N m (RT) and 2.5 × 10^–5 mm^3/N m (300 °C), respectively. The COF was found to be 2 times lower at RT and wear rate 10^2 times lower at RT and 300 °C than those of 304 stainless steel. This study may lead to the processing of high-entropy alloy films for large-scale industrial applications.

high-entropy alloys, magnetron sputtering, spark plasma sintering, mechanical properties, wear

Alvi S. - other affiliation
Jarząbek D.M. - IPPT PAN
Kohan M.G. - other affiliation
Hedman D. - other affiliation
Jenczyk P. - IPPT PAN
Natile M.M. - other affiliation
Vomiero A. - other affiliation
Akhtar F. - other affiliation
3.  Jenczyk P., Gawrońska M., Dera W., Chrzanowska-Giżyńska J., Denis P., Jarząbek D.M., Application of SiC particles coated with a protective Ni layer for production of Ni/SiC co-electrodeposited composite coatings with enhanced tribological properties, CERAMICS INTERNATIONAL, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2019.08.063, Vol.45, No.17B, pp.23540-23547, 2019

In this paper, the mechanical properties of composites consisting of electroplated Ni and co-electrodeposited SiC particles, coated with a thin protective layer of Ni, were studied. The protective layer was on the SiC particles prior to adding them to the electrolyte bath. It was demonstrated that due to the application of the protective layer it was possible to decrease sliding friction force, and improve the wear resistance, of the composite coatings in comparison with standard electroplated composite coatings made of Ni and co-electrodeposited pure SiC particles. Coating SiC particles with Ni was achieved by means of a PVD process. The main advantage of this step is avoiding oxidation of the surface of the particles during the contact with an electrolyte. Particles protected from oxidation lead to stronger interfacial bonding between the matrix and the reinforcement. Furthermore, better bonding protects the SiC particles from being extracted from the matrix by a counter-probe during friction and wear tests. The influence of the particle's concentration is studied. A smaller friction force and constant wear rate was observed.

wear, friction, interfacial bonding strength, metal matrix composites, silicon carbide, electrodeposited nickel

Jenczyk P. - IPPT PAN
Gawrońska M. - Warsaw University of Technology (PL)
Dera W. - IPPT PAN
Chrzanowska-Giżyńska J. - IPPT PAN
Denis P. - IPPT PAN
Jarząbek D.M. - IPPT PAN

Conference abstracts
1.  Jenczyk P., Jarząbek D.M., Influence of protective Ni coating on SiC particles on tribological properties of coelectrodeposited Ni-SiC composite coating, EUROMAT 2019, European Congress and Exhibition on Advanced Materials and Processes 2019, 2019-09-01/09-05, Stockholm (SE), pp.763, 2019

Filing No./Date
Filing Publication
Protection Area, Applicant Name
Patent Number
Date of Grant
Jarząbek D.M., Jenczyk P.
Urządzenie do zastosowania jako łożysko lub prowadnica liniowa, sposób jego wykonania oraz jego zastosowanie jako siłomierza
PL, Instytut Podstawowych Problemów Techniki PAN

Category A Plus


logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15

Find Us

© Institute of Fundamental Technological Research Polish Academy of Sciences 2021