Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Bin Ding

Donghua University (CN)

Ostatnie publikacje
1.  De Sio L., Ding B., Focsan M., Kogermann K., Pascoal-Faria P., Petronella F., Mitchell G., Zussman E., Pierini F., Personalized reusable face masks with smart nano‐assisted destruction of pathogens for COVID‐19: a visionary road, Chemistry - A European Journal, ISSN: 0947-6539, DOI: 10.1002/chem.202004875, Vol.27, pp.1-20, 2021

Streszczenie:
The Coronavirus disease 2019 (COVID‐19) emergency has demonstrated that the utilization of face masks plays a critical role in limiting the outbreaks. Healthcare professionals utilize masks all day long without replacing them very frequently, thus representing a source of cross‐infection for patients and themselves. Nanotechnology is a powerful tool with the capability to produce nanomaterials with unique physicochemical and anti‐pathogen properties. Here, we outline how to realize non‐disposable and highly comfortable respirators with light‐triggered self‐disinfection ability by bridging bioactive nanofiber properties and stimuli‐responsive nanomaterials. The visionary road highlighted in this Concept is based on the possibility to develop a new generation of masks based on multifunctional membranes where the presence of nanoclusters and plasmonic nanoparticles arranged in a hierarchical structure enables the realization of a chemically‐driven and on‐demand anti‐pathogen activities. Multilayer electrospun membranes have the ability to dissipate humidity present within the mask, enhancing the wearability and usability. The photo‐thermal disinfected membrane is the core of these 3D printed and reusable masks with moisture pump capability. Personalized face masks with smart nano‐assisted destruction of pathogens will bring enormous advantages to the entire global community, especially for front‐line personnel, and will open up great opportunities for innovative medical applications.

Słowa kluczowe:
face masks, light-responsive nanomaterials, anti-pathogen, electrospinning, digitally personalized

Afiliacje autorów:
De Sio L. - Sapienza University of Rome (IT)
Ding B. - Donghua University (CN)
Focsan M. - inna afiliacja
Kogermann K. - inna afiliacja
Pascoal-Faria P. - inna afiliacja
Petronella F. - inna afiliacja
Mitchell G. - inna afiliacja
Zussman E. - Technion - Israel Institute of Technology (IL)
Pierini F. - IPPT PAN
140p.
2.  Rinoldi C., Zargarian S.S., Nakielski P., Li X., Liguori A., Petronella F., Presutti D., Wang Q., Costantini M., De Sio L., Gualandi C., Ding B., Pierini F., Nanotechnology-assisted RNA delivery: from nucleic acid therapeutics to COVID-19 vaccines, Small Methods, ISSN: 2366-9608, DOI: 10.1002/smtd.202100402, Vol.5, No.9, pp.2100402-1-49, 2021

Streszczenie:
In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists’ enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.

Afiliacje autorów:
Rinoldi C. - IPPT PAN
Zargarian S.S. - IPPT PAN
Nakielski P. - IPPT PAN
Li X. - Donghua University (CN)
Liguori A. - University of Bologna (IT)
Petronella F. - inna afiliacja
Presutti D. - Institute of Physical Chemistry, Polish Academy of Sciences (PL)
Wang Q. - Donghua University (CN)
Costantini M. - Sapienza University of Rome (IT)
De Sio L. - Sapienza University of Rome (IT)
Gualandi C. - University of Bologna (IT)
Ding B. - Donghua University (CN)
Pierini F. - IPPT PAN
100p.
3.  Pawłowska S., Rinoldi C., Nakielski P., Ziai Y., Urbanek O., Li X., Kowalewski T.A., Ding B., Pierini F., Ultraviolet light‐assisted electrospinning of core–shell fully cross‐linked P(NIPAAm‐co‐NIPMAAm) hydrogel‐based nanofibers for thermally induced drug delivery self‐regulation, Advanced Materials Interfaces, ISSN: 2196-7350, DOI: 10.1002/admi.202000247, Vol.7, No.12, pp.2000247-1-13, 2020

Streszczenie:
Body tissues and organs have complex functions which undergo intrinsic changes during medical treatments. For the development of ideal drug delivery systems, understanding the biological tissue activities is necessary to be able to design materials capable of changing their properties over time, on the basis of the patient's tissue needs. In this study, a nanofibrous thermal‐responsive drug delivery system is developed. The thermo‐responsivity of the system makes it possible to self‐regulate the release of bioactive molecules, while reducing the drug delivery at early stages, thus avoiding high concentrations of drugs which may be toxic for healthy cells. A co‐axial electrospinning technique is used to fabricate core–shell cross‐linked copolymer poly(N‐isopropylacrylamide‐co‐N‐isopropylmethacrylamide) (P(NIPAAm‐co‐NIPMAAm)) hydrogel‐based nanofibers. The obtained nanofibers are made of a core of thermo‐responsive hydrogel containing a drug model, while the outer shell is made of poly‐l‐lactide‐co‐caprolactone (PLCL). The custom‐made electrospinning apparatus enables the in situ cross‐linking of P(NIPAAm‐co‐NIPMAAm) hydrogel into a nanoscale confined space, which improves the electrospun nanofiber drug dosing process, by reducing its provision and allowing a self‐regulated release control. The mechanism of the temperature‐induced release control is studied in depth, and it is shown that the system is a promising candidate as a "smart" drug delivery platform.

Słowa kluczowe:
biomimetic nanomaterials, electrospun core–shell nanofibers, hierarchical nanostructures, smart drug delivery, thermo‐responsive hydrogels

Afiliacje autorów:
Pawłowska S. - IPPT PAN
Rinoldi C. - IPPT PAN
Nakielski P. - IPPT PAN
Ziai Y. - IPPT PAN
Urbanek O. - IPPT PAN
Li X. - Donghua University (CN)
Kowalewski T.A. - IPPT PAN
Ding B. - Donghua University (CN)
Pierini F. - IPPT PAN
100p.
4.  Wang L., Lv H., Liu L., Zhang Q., Nakielski P., Si Y., Cao J., Li X., Pierini F., Yu J., Ding B., Electrospun nanofiber-reinforced three-dimensional chitosan matrices: architectural, mechanical and biological properties, JOURNAL OF COLLOID AND INTERFACE SCIENCE, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2020.01.016, Vol.565, pp.416-425, 2020

Streszczenie:
The poor intrinsic mechanical properties of chitosan hydrogels have greatly hindered their practical applications. Inspired by nature, we proposed a strategy to enhance the mechanical properties of chitosan hydrogels by construction of a nanofibrous and cellular architecture in the hydrogel without toxic chemical crosslinking. To this end, electrospun nanofibers including cellulose acetate, polyacrylonitrile, and SiO2 nanofibers were introduced into chitosan hydrogels by homogenous dispersion and lyophilization. With the addition of 30% cellulose acetate nanofibers, the cellular structure could be maintained even in water without crosslinking, and integration of 60% of the nanofibers could guarantee the free-standing structure of the chitosan hydrogel with a low solid content of 1%. Moreover, the SiO2 nanofiber-reinforced chitosan (SiO2 NF/CS) three-dimensional (3D) matrices exhibit complete shape recovery from 80% compressive strain and excellent injectability. The cellular architecture and nanofibrous structure in the SiO2 NF/CS matrices are beneficial for human mesenchymal stem cell adhesion and stretching. Furthermore, the SiO2 NF/CS matrices can also act as powerful vehicles for drug delivery. As an example, bone morphogenetic protein 2 could be immobilized on SiO2 NF/CS matrices to induce osteogenic differentiation. Together, the electrospun nanofiber-reinforced 3D chitosan matrices exhibited improved mechanical properties and enhanced biofunctionality, showing great potential in tissue engineering.

Słowa kluczowe:
chitosan hydrogel, electrospun nanofiber, mechanical property, nanofibrous matrix, tissue engineering

Afiliacje autorów:
Wang L. - Imperial College London (GB)
Lv H. - Medical College of Soochow University (CN)
Liu L. - Donghua University (CN)
Zhang Q. - Medical College of Soochow University (CN)
Nakielski P. - IPPT PAN
Si Y. - Donghua University (CN)
Cao J. - inna afiliacja
Li X. - Donghua University (CN)
Pierini F. - IPPT PAN
Yu J. - Donghua University (CN)
Ding B. - Donghua University (CN)
100p.

Patenty
Numer/data zgłoszenia patentowego
Ogłoszenie o zgłoszeniu patentowym
Twórcy
Tytuł
Kraj i Nazwa uprawnionego z patentu
Numer patentu
Ogłoszenie o udzieleniu patentu
pdf
435749
2020-10-21
-
-
Pierini F., Nakielski P., Rinoldi C., Pawłowska S., Ding B., Li X., Si Y.
Nanoplatforma dostarczania leków na żądanie, sposób jej wytwarzania oraz zastosowanie
PL, Instytut Podstawowych Problemów Techniki PAN
-
-
-

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2021