Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Michael R.H White


Ostatnie publikacje
1.  Phillips N., Manning C., Pettini T., Veronica B., Elli M., Peter S., Boyd J., Bagnall J., Paszek P., Spiller David G., White M., Goodfellow M., Tobias G., Magnus R., Nancy P., Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation, eLife, ISSN: 2050-084X, DOI: 10.7554/eLife.16118, Vol.5, pp.e16118-1-33, 2016

Streszczenie:
Recent studies suggest that cells make stochastic choices with respect to differentiation or division. However, the molecular mechanism underlying such stochasticity is unknown. We previously proposed that the timing of vertebrate neuronal differentiation is regulated by molecular oscillations of a transcriptional repressor, HES1, tuned by a post-transcriptional repressor, miR-9. Here, we computationally model the effects of intrinsic noise on the Hes1/miR-9 oscillator as a consequence of low molecular numbers of interacting species, determined experimentally. We report that increased stochasticity spreads the timing of differentiation in a population, such that initially equivalent cells differentiate over a period of time. Surprisingly, inherent stochasticity also increases the robustness of the progenitor state and lessens the impact of unequal, random distribution of molecules at cell division on the temporal spread of differentiation at the population level. This advantageous use of biological noise contrasts with the view that noise needs to be counteracted.

Afiliacje autorów:
Phillips N. - inna afiliacja
Manning C. - inna afiliacja
Pettini T. - inna afiliacja
Veronica B. - inna afiliacja
Elli M. - inna afiliacja
Peter S. - inna afiliacja
Boyd J. - inna afiliacja
Bagnall J. - inna afiliacja
Paszek P. - IPPT PAN
Spiller David G. - inna afiliacja
White M. - inna afiliacja
Goodfellow M. - inna afiliacja
Tobias G. - inna afiliacja
Magnus R. - inna afiliacja
Nancy P. - inna afiliacja
2.  Yunjiao W., Paszek P., Horton Caroline A., Kell Douglas B., White M., Broomhead David S., Muldoon M., Interactions among oscillatory pathways in NF-kappa B signaling, BMC SYSTEMS BIOLOGY, ISSN: 1752-0509, DOI: 10.1186/1752-0509-5-23, Vol.5, pp.23-1-11, 2011

Streszczenie:
Background

Sustained stimulation with tumour necrosis factor alpha (TNF-alpha) induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B) system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer) and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways.
Results

First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics.
Conclusions

Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently weak stimulation. Further simulations suggest that the nonlinearities of the NF-kappa B feedback oscillator mean that even sinusoidally modulated forcing can induce a rich variety of nonlinear interactions.

Afiliacje autorów:
Yunjiao W. - inna afiliacja
Paszek P. - IPPT PAN
Horton Caroline A. - inna afiliacja
Kell Douglas B. - inna afiliacja
White M. - inna afiliacja
Broomhead David S. - inna afiliacja
Muldoon M. - inna afiliacja
40p.
3.  Paszek P., Jackson Dean A., White M., Oscillatory control of signalling molecules, Current Opinion in Genetics & Development, ISSN: 0959-437X, DOI: 10.1016/j.gde.2010.08.004, Vol.20, No.6, pp.670-676, 2010

Streszczenie:
The emergence of biological function from the dynamic control of cellular signalling molecules is a fundamental process in biology. Key questions include: How do cells decipher noisy environmental cues, encode these signals to control fate decisions and propagate information through tissues? Recent advances in systems biology, and molecular and cellular biology, exemplified by analyses of signalling via the transcription factor Nuclear Factor kappaB (NF-κB), reveal a critical role of oscillatory control in the regulation of these biological functions. The emerging view is that the oscillatory dynamics of signalling molecules and the epigenetically regulated specificity for target genes contribute to robust regulation of biological function at different levels of cellular organisation through frequency-dependent information encoding.

Previous article in issue

Afiliacje autorów:
Paszek P. - IPPT PAN
Jackson Dean A. - inna afiliacja
White M. - inna afiliacja

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024