Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Mahsa Sahebdivani


Ostatnie publikacje
1.  Kurniawan T., Sahebdivani M., Zaremba D., Błoński S., Garstecki P., van Steijn V., Korczyk P.M., Formation of droplets in microfluidic cross-junctions at small capillary numbers: Breakdown of the classical squeezing regime, Chemical Engineering Journal, ISSN: 1385-8947, DOI: 10.1016/j.cej.2023.145601, Vol.474, pp.14560-14560, 2023

Streszczenie:
Two decades of research on droplet formation in microchannels have led to the widely accepted view that droplets form through the squeezing mechanism when interfacial forces dominate over viscous forces. The initially surprising finding that the volume of the droplets is insensitive to the relative importance of these two forces is nowadays well understood from the constrained deformation of the droplet interface during formation. In this work, we show a lower limit of the squeezing mechanism for droplets produced in microfluidic cross-junctions. Below this limit, in the leaking regime, which was recently discovered for droplets produced in T-junctions, the volume of the produced droplets strongly depends on the relative importance of interfacial and viscous forces, as captured by the capillary number. We reveal a fundamental difference in the mechanisms at play in the leaking regime between T- and cross-junctions. In cross-junctions, the droplet neck elongates substantially, and unlike the case of the T-junction, the magnitude of this elongation depends strongly on the value of the capillary number. This elongation significantly affects the final droplet volume in a low capillary number regime. Generalizing the classical squeezing law by lifting the original assumptions and incorporating both identified mechanisms of leaking through gutters and neck elongation, we derive a model for droplet formation and show that it agrees with our experiments.

Słowa kluczowe:
Microfluidics,Cross-junction,Flow-focusing device,Droplet formation,Two-phase flow,Scaling law,Squeezing regime

Afiliacje autorów:
Kurniawan T. - IPPT PAN
Sahebdivani M. - inna afiliacja
Zaremba D. - IPPT PAN
Błoński S. - IPPT PAN
Garstecki P. - Institute of Physical Chemistry, Polish Academy of Sciences (PL)
van Steijn V. - Delft University of Technology (NL)
Korczyk P.M. - IPPT PAN
200p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024