Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk


Maidi Wang

Ostatnie publikacje
1.  Wang M., Du J., Li M.S., Pierini F., Li X., Yu J., Ding B., In situ forming double-crosslinked hydrogels with highly dispersed short fibers for the treatment of irregular wounds, Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/D2BM01891H, Vol.11, No.7, pp.2383-2394, 2023

In situ forming injectable hydrogels hold great potential for the treatment of irregular wounds. However, their practical applications were hindered by long gelation time, poor mechanical performance, and a lack of a natural extracellular matrix structure. Herein, amino-modified electrospun poly(lactic-co-glycolic acid) (APLGA) short fibers with uniform distribution were introduced into gelatin methacrylate/oxidized dextran (GM/ODex) hydrogels. In comparison with the fiber aggregation structure in the PLGA fiber-incorporated hydrogels, the hydrogels with APLGA fibers possessed a uniform porous structure. The highly dispersed APLGA short fibers accelerated the sol–gel phase transition of the hydrogel due to the formation of dynamic Schiff-base bonds between the fibers and hydrogels. Furthermore, in combination with UV-assisted crosslinking, a rapid gelation time of 90 s was achieved for the double-crosslinked hydrogels. The addition of APLGA short fibers as fillers and the formation of the double-crosslinking network enhanced the mechanical performance of the hydrogels. Furthermore, the fiber–hydrogel composites exhibited favorable injectability, excellent biocompatibility, and improved cell infiltration. In vivo assessment indicated that the GM/ODex-APLGA hydrogels successfully filled the full-thickness defects and improved wound healing. This work demonstrates a promising solution for the treatment of irregular wounds.

Afiliacje autorów:
Wang M. - inna afiliacja
Du J. - University of California (US)
Li M.S. - Institute of Physics, Polish Academy of Sciences (PL)
Pierini F. - IPPT PAN
Li X. - Donghua University (CN)
Yu J. - Donghua University (CN)
Ding B. - Donghua University (CN)

Kategoria A Plus


logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15

Znajdź nas

© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024