Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Kamil Kaszyca



Recent publications
1.  Pietrzak K., Gładki A., Strojny-Nędza A., Wejrzanowski T., Kaszyca K., Analysis of isotropy and uniformity of the distribution ofreinforcing phase in Cu/SiC composite materials using MCT methods, Image Analysis & Stereology, ISSN: 1580-3139, DOI: 10.5566/ias.1911, Vol.40, No.1, pp.39-47, 2021

Abstract:
Tomography allows embedding of one space in another, especially ℛ2→ℛ3, and observation of the nature of the volumetric internal composite structure. Now, not only a simple interpretation is expected of geometry defined via single thresholds of structures. The binary segmentation used for numerical struc-ture analysis requires more detailed presentation. This paper shows an example of image analysis tech-niques applied to study the homogeneity of two-phase material. Using tomography analysis, the results of the homogeneity of the SiC particles with 10vol.%, 20vol.%, 30vol.%, 40vol.% volumetric bulk density of Cu/SiC composites are presented. Finally, for two independent coordinate systems, the distribution of SiC particle masses and their total moments of inertia were determined. The results confirmed that for well-mixed composite powders the homogeneity of the reinforcing phase is expected in samples with a SiC volume near 30vol.%. In this case, segregation by translation and rotation of SiC particles in the matrix, during the sintering process is restricted.

Keywords:
Cu/SiC composite materials, image analysis, isotropy, uniformity

Affiliations:
Pietrzak K. - IPPT PAN
Gładki A. - Institute of Electronic Materials Technology (PL)
Strojny-Nędza A. - Institute of Electronic Materials Technology (PL)
Wejrzanowski T. - Warsaw University of Technology (PL)
Kaszyca K. - other affiliation
2.  Strojny-Nędza A., Egizabal P., Pietrzak K., Zieliński R., Kaszyca K., Piątkowska A., Chmielewski M., Corrosion and thermal shock resistance of metal (Cu, Al) matrix composites reinforced by SiC particles, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/bpasts.2020.134644, Vol.68, No.5, pp.1227-1236, 2020

Abstract:
This paper presents the results of studies concerning the production and characterization of Al-SiC/W and Cu-SiC/W composite materials with a 30% volume fraction of reinforcing phase particles as well as the influence of corrosion and thermal shocks on the properties of selected metal matrix composites. Spark plasma sintering method (SPS) was applied for the purpose of producing these materials. In order to avoid the decomposition of SiC surface, SiC powder was coated with a thin tungsten layer using plasma vapour deposition (PVD) method. The obtained results were analysed by the effect of the corrosion and thermal shocks on materials density, hardness, bending strength, tribological and thermal properties. Qualitative X-ray analysis and observation of microstructure of sample surfaces after corrosion tests and thermal shocks were also conducted. The use of PVD technique allows us to obtain an evenly distributed layer of titanium with a constant thickness of 1.5 μm. It was found that adverse environmental conditions and increased temperature result in a change in the material behaviour in wear tests.

Keywords:
metal-matrix composites, silicon carbide, wear resistance, corrosion, thermal shocks

Affiliations:
Strojny-Nędza A. - Institute of Electronic Materials Technology (PL)
Egizabal P. - Fundacion Tecnalia Research and Innovation (ES)
Pietrzak K. - other affiliation
Zieliński R. - Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL)
Kaszyca K. - other affiliation
Piątkowska A. - Institute of Electronic Materials Technology (PL)
Chmielewski M. - Institute of Electronic Materials Technology (PL)
3.  Pietrzak K., Strojny-Nędza A., Kaszyca K., Shepa I., Mudra E., Vojtko M., Dusza J., Antal V., Hovancova J., Chmielewski M., Oxidation and corrosion resistance of NiCr-Re and NiCr-Re-Al2O3 materials fabricated by spark plasma sintering, Metals, ISSN: 2075-4701, DOI: 10.3390/met10081009, Vol.10, No.8, pp.1009-1-12, 2020

Abstract:
The thermal and oxidation resistance of elements found in the combustion boilers of power generation plants are some of the most important factors deciding their effectiveness. This paper shows the experimental results of the influence of NiCr-based material composition on the microstructure and phase changes occurring during the oxidation and corrosion process. NiCr alloy was modified by the addition of rhenium and aluminum oxide. Materials were densified using the spark plasma sintering method at a sintering temperature of 1050 °C. Oxidation tests conducted up to 1100 °C under synthetic airflow revealed the formation of a thin Cr2O3 layer protecting the material against in-depth oxidation. Results of electrochemical corrosion in a 0.5 M NaCl solution indicated a positive role of Re and Al2O3 addition, confirmed by low corrosion current density values in comparison to the other reference materials. According to the provided positive preliminary test results, we can conclude that a NiCr-Re-Al2O3 system in coating form was successfully obtained by the plasma spraying method.

Keywords:
NiCr, rhenium, aluminium oxide, metal matrix composites, oxidation, corrosion

Affiliations:
Pietrzak K. - IPPT PAN
Strojny-Nędza A. - Institute of Electronic Materials Technology (PL)
Kaszyca K. - other affiliation
Shepa I. - other affiliation
Mudra E. - other affiliation
Vojtko M. - other affiliation
Dusza J. - Institute of Materials Research, Slovak Academy of Sciences (SK)
Antal V. - other affiliation
Hovancova J. - other affiliation
Chmielewski M. - Institute of Electronic Materials Technology (PL)
4.  Nosewicz S., Romelczyk-Baishya B., Lumelskyj D., Chmielewski M., Bazarnik P., Jarząbek D.M., Pietrzak K., Kaszyca K., Pakieła Z., Experimental and numerical studies of micro- and macromechanical properties of modified copper–silicon carbide composites, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, ISSN: 0020-7683, DOI: 10.1016/j.ijsolstr.2018.10.025, Vol.160, pp.187-200, 2019

Abstract:
The presented research investigation comprises the study of the mechanical properties of modified copper–silicon carbide composites at the micro- and macroscopic scale. The improvement of a copper–silicon carbide composite refers to the addition of a protective layer at the ceramic reinforcement in order to prevent the dissolution of silicon in the copper matrix. The macromechanical behaviour has been evaluated by the performance in a small punch test. The investigation has been carried out with samples with varying volume content of ceramic reinforcement and different protective layers of the silicon carbide particles. Moreover, the influence of temperature during the strength test has been studied. Next, the results have been referred to the interfacial bonding strength of Cu and SiC particles. SEM characterization of samples has been performed to link the composites' microstructure with the mechanical behaviour. Finally, the experimental results of the small punch test have been predicted via a numerical approach. Finite element analysis has been employed to reproduce the response of the composite specimen during the test. Satisfactory agreement with the experimental curve has been obtained.

Keywords:
metal matrix composites, silicon carbide, metallic layers deposition, small punch, interface strength, finite element method

Affiliations:
Nosewicz S. - IPPT PAN
Romelczyk-Baishya B. - Warsaw University of Technology (PL)
Lumelskyj D. - IPPT PAN
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Bazarnik P. - Warsaw University of Technology (PL)
Jarząbek D.M. - IPPT PAN
Pietrzak K. - other affiliation
Kaszyca K. - other affiliation
Pakieła Z. - Warsaw University of Technology (PL)
5.  Zybała R., Mars K., Mikuła A., Bogusławski J., Soboń G., Sotor J., Schmidt M., Kaszyca K., Chmielewski M., Ciupiński L., Pietrzak K., Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0155, Vol.62, No.2B, pp.1067-1070, 2017

Abstract:
Antimony telluride (Sb2Te3) is an intermetallic compound crystallizing in a hexagonal lattice with R-3m space group. It creates a c lose packed structure of an ABCABC type. As intrinsic semiconductor characterized by excellent electrical properties, Sb2Te3 is widely used as a low-temperature thermoelectric material. At the same time, due to unusual properties (strictly connected with the structure), antimony telluride exhibits nonlinear optical properties, including saturable absorption. Nanostructurization, elemental doping and possibilities of synthesis Sb2Te3 in various forms (polycrystalline, single crystal or thin film) are the most promising methods for improving thermoelectric properties of Sb2Te3.Applications of Sb2Te3 in optical devices (e.g. nonlinear modulator, in particular saturable absorbers for ultrafast lasers) are also interesting. The antimony telluride in form of bulk polycrystals and layers for thermoelectric and optoelectronic applications respectively were used. For optical applications thin layers of the material were formed and studied. Synthesis and structural characterization of Sb2Te3 were also presented here. The anisotropy (packed structure) and its influence on thermoelectric properties have been performed. Furthermore, preparation and characterization of Sb2Te3 thin films for optical uses have been also made

Keywords:
antimony telluride, thermoelectric materials, thin films, PVD magnetron sputtering, topological insulator

Affiliations:
Zybała R. - Warsaw University of Technology (PL)
Mars K. - AGH University of Science and Technology (PL)
Mikuła A. - AGH University of Science and Technology (PL)
Bogusławski J. - Wroclaw University of Science and Technology (PL)
Soboń G. - Wroclaw University of Science and Technology (PL)
Sotor J. - Wroclaw University of Science and Technology (PL)
Schmidt M. - Institute of Electronic Materials Technology (PL)
Kaszyca K. - other affiliation
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Ciupiński L. - Warsaw University of Technology (PL)
Pietrzak K. - other affiliation
6.  Chmielewski M., Pietrzak K., Strojny-Nędza A., Kaszyca K., Zybala R., Bazarnik P., Lewandowska M., Nosewicz S., Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique, SCIENCE OF SINTERING, ISSN: 0350-820X, DOI: 10.2298/SOS1701011C, Vol.49, No.1, pp.11-22, 2017

Abstract:
The presented paper investigates the relationship between the microstructure and thermal properties of copper–silicon carbide composites obtained through hot pressing (HP) and spark plasma sintering (SPS) techniques. The microstructural analysis showed a better densification in the case of composites sintered in the SPS process. TEM investigations revealed the presence of silicon in the area of metallic matrix in the region close to metal ceramic boundary. It is the product of silicon dissolving process in copper occurring at an elevated temperature. The Cu-SiC interface is significantly defected in composites obtained through the hot pressing method, which has a major influence on the thermal conductivity of materials.

Keywords:
metal matrix composites, silicon carbide, interface, spark plasma sintering, thermal conductivity

Affiliations:
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Pietrzak K. - other affiliation
Strojny-Nędza A. - Institute of Electronic Materials Technology (PL)
Kaszyca K. - other affiliation
Zybala R. - Warsaw University of Technology (PL)
Bazarnik P. - Warsaw University of Technology (PL)
Lewandowska M. - other affiliation
Nosewicz S. - IPPT PAN
7.  Zybała R., Schmidt M., Kaszyca K., Ciupiński Ł., Kruszewski M.J., Pietrzak K., Method and Apparatus for Determining Operational Parameters of Thermoelectric Modules, Journal of Electronic Materials, ISSN: 0361-5235, DOI: 10.1007/s11664-016-4712-1, Vol.45, No.10, pp.5223-5231, 2016

Abstract:
The main aim of this work was to construct and test an apparatus for characterization of high temperature thermoelectric modules to be used in thermoelectric generator (TEGs) applications. The idea of this apparatus is based on very precise measurements of heat fluxes passing through the thermoelectric (TE) module, at both its hot and cold sides. The electrical properties of the module, under different temperature and load conditions, were used to estimate efficiency of energy conversion based on electrical and thermal energy conservation analysis. The temperature of the cold side, Tc, was stabilized by a precise circulating thermostat (≤0.1°C) in a temperature range from 5°C to 90°C. The amount of heat absorbed by a coolant flowing through the heat sink was measured by the calibrated and certified heat flow meter with an accuracy better than 1%. The temperature of the hot side, Th, was forced to assumed temperature (Tmax = 450°C) by an electric heater with known power (Ph = 0–600 W) with ample thermal insulation. The electrical power was used in calculations. The TE module, heaters and cooling plate were placed in an adiabatic vacuum chamber. The load characteristics of the module were evaluated using an electronically controlled current source as a load. The apparatus may be used to determine the essential parameters of TE modules (open circuit voltage, Uoc, short circuit current, Isc, internal electrical resistance, Rint, thermal resistance, Rth, power density, and efficiency, η, as a function of Tc and Th). Several commercially available TE modules based on Bi2Te3 and Sb2Te3 alloys were tested. The measurements confirmed that the constructed apparatus was highly accurate, stable and yielded reproducible results; therefore, it is a reliable tool for the development of thermoelectric generators.

Keywords:
energy conversion efficiency, power generation, thermoelectric modules, performance characterization, heat recovery, renewable energy

Affiliations:
Zybała R. - Warsaw University of Technology (PL)
Schmidt M. - Institute of Electronic Materials Technology (PL)
Kaszyca K. - other affiliation
Ciupiński Ł. - Warsaw University of Technology (PL)
Kruszewski M.J. - other affiliation
Pietrzak K. - other affiliation

Conference abstracts
1.  Chmielewski M., Pietrzak K., Strojny-Nędza A., Kaszyca K., Nosewicz S., Jarząbek D.M., The effect of nickel coating on the properties of Cu-SiC composites, EUROMAT 2017, European Congress and Exhibition on Advanced Materials and Processes, 2017-09-17/09-22, Thessaloniki (GR), pp.B6-P-TUE-P1-3-B6-P-TUE-P1-3, 2017

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2021