1. |
Czarnecka K., Wojasiński M.♦, Ciach T.♦, Sajkiewicz P., Solution blow spinning of polycaprolactone-rheological determination of spinnability and the effect of processing conditions on fiber diameter and alignment,
Materials, ISSN: 1996-1944, DOI: 10.3390/ma14061463, Vol.14, No.6, pp.1463-1-18, 2021 Abstract: The growing popularity of solution blow spinning as a method for the production of fibrous tissue engineering scaffolds and the vast range of polymer-solvent systems available for the method raises the need to study the effect of processing conditions on fiber morphology and develop a method for its qualitative assessment. Rheological approaches to determine polymer solution spinnability and image analysis approaches to describe fiber diameter and alignment have been previously proposed, although in a separate manner and mostly for the widely known, well-researched electrospinning method. In this study, a series of methods is presented to determine the processing conditions for the development of submicron fibrous scaffolds. Rheological methods are completed with extensive image analysis to determine the spinnability window for a polymer–solvent system and qualitatively establish the influence of polymer solution concentration and collector rotational speed on fiber morphology, diameter, and alignment. Process parameter selection for a tissue engineering scaffold target application is discussed, considering the varying structural properties of the native extracellular matrix of the tissue of interest. Keywords: solution blow spinning, rheology, image analysis, nanofibers, fiber alignment, biodegradable nanofibers Affiliations:
Czarnecka K. | - | IPPT PAN | Wojasiński M. | - | Warsaw University of Technology (PL) | Ciach T. | - | Warsaw University of Technology (PL) | Sajkiewicz P. | - | IPPT PAN |
|  |
2. |
Kaniuk Ł.♦, Ferraris S.♦, Spriano S.♦, Luxbacher T.♦, Krysiak Z.♦, Berniak K.♦, Zaszczyńska A., Marzec M.M.♦, Bernasik A.♦, Sajkiewicz P., Stachewicz U.♦, Time-dependent effects on physicochemical and surface properties of PHBV fibers and films in relation to their interactions with fibroblasts,
APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2021.148983, Vol.545, pp.148983-1-13, 2021 Abstract: Biodegradability or materials physicochemical stability are the key biomaterials selection parameters for various medical and tissue engineering applications. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a natural copolymer known from its biocompatibility with great support for cells growth and attachment on films and fibers. In our studies, the physicochemical properties of electrospun PHBV fibers and spin-coated films aged for 1, 4 and 8 weeks were analyzed using bulk (FTIR) and surface chemistry (XPS) methods and water contact angle. Further, we characterized the zeta potential changes after aging, by means of electrokinetic measurements, and cell responses to it, using NIH 3T3 murine fibroblasts. Colorimetric MTS cell viability test allowed the assessment of cell proliferation. Additionally, the morphology of fibroblasts and biointerfaces were studied by confocal laser and electron scanning microscopy (CLSM and SEM). These studies indicated that the activity, attachment and proliferation of fibroblasts is independent of aging of PHBV fibers and films. PHBV films show very stable zeta potential over 8 weeks of aging, opposite to PHBV fibers. Importantly, the flat film of PHBV increases cell proliferation, while the fibrous meshes are an excellent support for their stretching. The results of the study revealed clear advantages of PHBV films and fibrous meshes in cell-material interaction. Keywords: cell morphology, fibroblast, electrospun fibers, PHBV, Zeta potential Affiliations:
Kaniuk Ł. | - | other affiliation | Ferraris S. | - | other affiliation | Spriano S. | - | other affiliation | Luxbacher T. | - | other affiliation | Krysiak Z. | - | other affiliation | Berniak K. | - | other affiliation | Zaszczyńska A. | - | IPPT PAN | Marzec M.M. | - | other affiliation | Bernasik A. | - | other affiliation | Sajkiewicz P. | - | IPPT PAN | Stachewicz U. | - | AGH University of Science and Technology (PL) |
|  |
3. |
Niemczyk-Soczyńska B., Dulnik J., Jeznach O., Kołbuk D., Sajkiewicz P., Shortening of electrospun PLLA fibers by ultrasonication,
Micron, ISSN: 0968-4328, DOI: 10.1016/j.micron.2021.103066, Vol.145, pp.103066-1-8, 2021 Abstract: This research work is aimed at studying the effect of ultrasounds on the effectiveness of fiber fragmentation by taking into account the type of sonication medium, processing time, and various PLLA molecular weights. Fragmentation was followed by an appropriate filtration in order to decrease fibers length distribution. It was evidenced by fiber length determination using SEM that the fibers are shortened after ultrasonic treatment, and the effectiveness of shortening depends on the two out of three investigated parameters, mostly on the sonication medium, and processing time. The gel permeation chromatography (GPC) confirmed that such ultrasonic treatment does not change the polymers' molecular weight. Our results allowed to optimize the ultrasonic fragmentation procedure of electrospun fibers while preliminary viscosity measurements of fibers loaded into hydrogel confirmed their potential in further use as fillers for injectable hydrogels for regenerative medicine applications. Keywords: electrospinning, ultrasonication, short fibers, polymers Affiliations:
Niemczyk-Soczyńska B. | - | IPPT PAN | Dulnik J. | - | IPPT PAN | Jeznach O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
|  |
4. |
Ghosal K.♦, Augustine R.♦, Zaszczyńska A., Barman M.♦, Jain A., Hasan A.♦, Kalarikkal N.♦, Sajkiewicz P., Thomas S.♦, Novel drug delivery systems based on triaxial electrospinning based nanofibers,
REACTIVE AND FUNCTIONAL POLYMERS, ISSN: 1381-5148, DOI: 10.1016/j.reactfunctpolym.2021.104895, Vol.163, pp.104895-1-9, 2021 Abstract: Electrospinning is a widely investigated process for forming nanofibers. Nanofibers in drug delivery systems are extensively tested due to its remarkable properties e.g. small pore size or large surface area. Recent articles have informed about formation of fibers using triaxial electrospinning in drug delivery systems. This paper summarizes the process of triaxial electrospinning and its application in drug delivery. Triaxial electrospinning has advantages in forming complex nanostructures for specific drug delivery applications. This paper summarizes the possibility to use triaxial electrospinning to resolve the problem of limited drug solubility, to protect biomolecules from hostile environment, and to control drug release kinetics, with the possibility of loading of various drugs. There are literature data evidencing the possibility to achieve sustained release with a border case of zero rate order kinetics. There is no doubt that triaxial electrospinning opens a new way to develop sophisticated nanomaterials for achieving the desired functional performances and to expand the applications in the drug delivery area. Triaxial electrospinning method is interdisciplinary area with great potential in nanotechnology. Keywords: triaxial electrospinning, complex nanostructures, drug delivery, desired functional performance, sustained/controlled release Affiliations:
Ghosal K. | - | Jadavpur University (IN) | Augustine R. | - | Qatar University (QA) | Zaszczyńska A. | - | IPPT PAN | Barman M. | - | Dr. B. C. Roy College of Pharmacy and Allied Health Sciences (IN) | Jain A. | - | IPPT PAN | Hasan A. | - | Qatar University (QA) | Kalarikkal N. | - | Mahatma Gandhi Central University (IN) | Sajkiewicz P. | - | IPPT PAN | Thomas S. | - | Mahatma Gandhi Central University (IN) |
|  |
5. |
Szewczyk P.K.♦, Gradys A., Kyun Kim S.♦, Persano L.♦, Marzec M.♦, Kryshtal A.♦, Busolo T.♦, Toncelli A.♦, Pisignano D.♦, Bernasik A.♦, Kar-Narayan S.♦, Sajkiewicz P., Stachewicz U.♦, Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting,
ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c02578, Vol.12, No.11, pp.13575-13583, 2020 Abstract: Piezoelectric polymers are promising energy materials for wearable and implantable applications for replacing bulky batteries in small and flexible electronics. Therefore, many research studies are focused on understanding the behavior of polymers at a molecular level and designing new polymer-based generators using polyvinylidene fluoride (PVDF). In this work, we investigated the influence of voltage polarity and ambient relative humidity in electrospinning of PVDF for energy-harvesting applications. A multitechnique approach combining microscopy and spectroscopy was used to study the content of the β-phase and piezoelectric properties of PVDF fibers. We shed new light on β-phase crystallization in electrospun PVDF and showed the enhanced piezoelectric response of the PVDF fiber-based generator produced with the negative voltage polarity at a relative humidity of 60%. Above all, we proved that not only crystallinity but also surface chemistry is crucial for improving piezoelectric performance in PVDF fibers. Controlling relative humidity and voltage polarity increased the d33 piezoelectric coefficient for PVDF fibers by more than three times and allowed us to generate a power density of 0.6 μW·cm^–2 from PVDF membranes. This study showed that the electrospinning technique can be used as a single-step process for obtaining a vast spectrum of PVDF fibers exhibiting different physicochemical properties with β-phase crystallinity reaching up to 74%. The humidity and voltage polarity are critical factors in respect of chemistry of the material on piezoelectricity of PVDF fibers, which establishes a novel route to engineer materials for energy-harvesting and sensing applications. Keywords: PVDF, polymer crystallinity, electrospinning, piezoelectricity, voltage polarity Affiliations:
Szewczyk P.K. | - | other affiliation | Gradys A. | - | IPPT PAN | Kyun Kim S. | - | other affiliation | Persano L. | - | other affiliation | Marzec M. | - | other affiliation | Kryshtal A. | - | other affiliation | Busolo T. | - | other affiliation | Toncelli A. | - | other affiliation | Pisignano D. | - | other affiliation | Bernasik A. | - | other affiliation | Kar-Narayan S. | - | other affiliation | Sajkiewicz P. | - | IPPT PAN | Stachewicz U. | - | AGH University of Science and Technology (PL) |
|  |
6. |
Ura D.P.♦, Rosell-Llompart J.♦, Zaszczyńska A., Vasilyev G.♦, Gradys A., Szewczyk P.K.♦, Knapczyk-Korczak J.♦, Avrahami R.♦, Šišková A.O.♦, Arinstein A.♦, Sajkiewicz P., Zussman E.♦, Stachewicz U.♦, The role of electrical polarity in electrospinning and on the mechanical and structural properties of as-spun fibers,
Materials, ISSN: 1996-1944, DOI: 10.3390/ma13184169, Vol.13, No.18, pp.4169-1-18, 2020 Abstract: Electric field strength and polarity in electrospinning processes and their effect on process dynamics and the physical properties of as-spun fibers is studied. Using a solution of the neutral polymer such as poly(methyl methacrylate) (PMMA) we explored the electrospun jet motion issued from a Taylor cone. We focused on the straight jet section up to the incipient stage of the bending instability and on the radius of the disk of the fibers deposited on the collecting electrode. A new correlation formula using dimensionless parameters was found, characterizing the effect of the electric field on the length of the straight jet, L˜E~E˜0.55. This correlation was found to be valid when the spinneret was either negatively or positively charged and the electrode grounded. The fiber deposition radius was found to be independent of the electric field strength and polarity. When the spinneret was negatively charged, L˜E was longer, the as-spun fibers were wider. The positively charged setup resulted in fibers with enhanced mechanical properties and higher crystallinity. This work demonstrates that often-overlooked electrical polarity and field strength parameters influence the dynamics of fiber electrospinning, which is crucial for designing polymer fiber properties and optimizing their collection. Keywords: fibers, electrical polarity, charges, electrospinning, PMMA, mechanical properties Affiliations:
Ura D.P. | - | AGH University of Science and Technology (PL) | Rosell-Llompart J. | - | other affiliation | Zaszczyńska A. | - | IPPT PAN | Vasilyev G. | - | Technion-Israel Institute of Technology (IL) | Gradys A. | - | IPPT PAN | Szewczyk P.K. | - | other affiliation | Knapczyk-Korczak J. | - | other affiliation | Avrahami R. | - | other affiliation | Šišková A.O. | - | other affiliation | Arinstein A. | - | Technion-Israel Institute of Technology (IL) | Sajkiewicz P. | - | IPPT PAN | Zussman E. | - | Technion-Israel Institute of Technology (IL) | Stachewicz U. | - | AGH University of Science and Technology (PL) |
|  |
7. |
Wahlen C.♦, Blankenburg J.♦, Tiedemann P.♦, Ewald J.♦, Sajkiewicz P., Müller A.H.E.♦, Floudas G.♦, Frey H.♦, Tapered multiblock copolymers based on farnesene and styrene: impact of biobased polydiene architectures on material properties,
Macromolecules, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.0c02118, pp.1-12, 2020 Abstract: The reactivity of the biobased monomer β-farnesene in the statistical anionic copolymerization with styrene and the effect of the bottlebrush-like polyfarnesene structure on the phase separation behavior were investigated. Furthermore, thermal and material properties of β-farnesene-based thermoplastic elastomers, based on tri- and pentablock copolymers with styrene, and their processing behavior were investigated. As shown by H NMR online kinetics, in analogy to both isoprene and β-myrcene, the direct (i.e., statistical) anionic copolymerization of β-farnesene and styrene in cyclohexane affords block-like, tapered copolymers because of the highly diverging reactivity ratios (rFar = 27; rS = 0.037). Algebraic expressions for both the molar and volume composition profiles were derived, which provide a mathematically accurate picture of the tapered copolymer structure. The one-pot, tapered copolymer approach was used to synthesize series of tri- (ABA) and pentablock (ABABA) copolymers of styrene (A) and β-farnesene (B), varying the polydiene volume fraction between 0.50 and 0.68, respectively. Depending on the polydiene volume fraction, the tapered multiblock copolymers showed phase separation in lamellar or hexagonally packed cylindrical structures, as determined by small-angle X-ray scattering. Well-defined tapered tri- and pentablock copolymers with molecular weights of 120 kg mol^–1 and low dispersity (Đ = 1.05–1.16) were obtained. The order of the tapered poly(farnesene-co-styrene) copolymers bears many similarities (same morphology, practically the same domain spacing, and a similar degree of segregation) to the corresponding polyisoprene copolymers with the same polydiene volume fraction. The similar domain spacing is suggestive of looped configurations mainly in the polyisoprene copolymers that are reduced in the polyterpene copolymers. The influence of the long alkenyl side chains of the polyfarnesene middle blocks on the mechanical properties of the multiblock copolymers was investigated by tensile testing. For this purpose, the respective tri- and pentablock copolymers of isoprene (C5 unit) and β-myrcene (C10) with styrene were synthesized as well, containing equal polydiene volume fractions as their β-farnesene-based (C15) analogs. The mechanical toughness of the polymers increased with decreasing length of the alkenyl side chains (from β-farnesene to isoprene). Furthermore, tapered polyfarnesene tri- and pentablock copolymers with styrene exhibit reduced solution viscosity in comparison to, for example, polyisoprene-based tapered PS-b-P(I-co-S) triblock copolymers, resulting in improved processability by electrospinning. These properties are discussed in terms of the different configurations of the polyterpene blocks and the pronounced differences of the entanglement molecular weights. Affiliations:
Wahlen C. | - | Johannes Gutenberg University (DE) | Blankenburg J. | - | Johannes Gutenberg University (DE) | Tiedemann P. | - | Johannes Gutenberg University (DE) | Ewald J. | - | Japan Construction Method and Machinery Research Institute (JP) | Sajkiewicz P. | - | IPPT PAN | Müller A.H.E. | - | Johannes Gutenberg University (DE) | Floudas G. | - | University of Ioannina (GR) | Frey H. | - | Johannes Gutenberg University (DE) |
|  |
8. |
Zaszczyńska A., Sajkiewicz P., Gradys A., Piezoelectric scaffolds as smart materials for neural tissue engineering,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym12010161, Vol.12, No.1, pp.161-1-25, 2020 Abstract: Injury to the central or peripheral nervous systems leads to the loss of cognitive and/or sensorimotor capabilities, which still lacks an effective treatment. Tissue engineering in the post-injury brain represents a promising option for cellular replacement and rescue, providing a cell scaffold for either transplanted or resident cells. Tissue engineering relies on scaffolds for supporting cell differentiation and growth with recent emphasis on stimuli responsive scaffolds, sometimes called smart scaffolds. One of the representatives of this material group is piezoelectric scaffolds, being able to generate electrical charges under mechanical stimulation, which creates a real prospect for using such scaffolds in non-invasive therapy of neural tissue. This paper summarizes the recent knowledge on piezoelectric materials used for tissue engineering, especially neural tissue engineering. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges, and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and serves as a starting point for novel research pathways in the most relevant and challenging open questions. Keywords: neural tissue engineering, piezoelectric scaffolds, smart materials, polymers Affiliations:
Zaszczyńska A. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Gradys A. | - | IPPT PAN |
|  |
9. |
Niemczyk-Soczyńska B., Gradys A., Sajkiewicz P., Hydrophilic surface functionalization of electrospun nanofibrous scaffolds in tissue engineering,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym12112636, Vol.12, No.11, pp.2636-1-20, 2020 Abstract: Electrospun polymer nanofibers have received much attention in tissue engineering due to their valuable properties such as biocompatibility, biodegradation ability, appropriate mechanical properties, and, most importantly, fibrous structure, which resembles the morphology of extracellular matrix (ECM) proteins. However, they are usually hydrophobic and suffer from a lack of bioactive molecules, which provide good cell adhesion to the scaffold surface. Post-electrospinning surface functionalization allows overcoming these limitations through polar groups covalent incorporation to the fibers surface, with subsequent functionalization with biologically active molecules or direct deposition of the biomolecule solution. Hydrophilic surface functionalization methods are classified into chemical approaches, including wet chemical functionalization and covalent grafting, a physiochemical approach with the use of a plasma treatment, and a physical approach that might be divided into physical adsorption and layer-by-layer assembly. This review discusses the state-of-the-art of hydrophilic surface functionalization strategies of electrospun nanofibers for tissue engineering applications. We highlighted the major advantages and drawbacks of each method, at the same time, pointing out future perspectives and solutions in the hydrophilic functionalization strategies. Keywords: surface functionalization, electrospinning, polymers, nanofiber, immobilization, tissue engineering Affiliations:
Niemczyk-Soczyńska B. | - | IPPT PAN | Gradys A. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
|  |
10. |
Zaszczyńska A., Gradys A., Sajkiewicz P., Progress in the applications of smart piezoelectric materials for medical devices,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym12112754, Vol.12, No.11, pp.2754-1-19, 2020 Abstract: Smart piezoelectric materials are of great interest due to their unique properties. Piezoelectric materials can transform mechanical energy into electricity and vice versa. There are mono and polycrystals (piezoceramics), polymers, and composites in the group of piezoelectric materials. Recent years show progress in the applications of piezoelectric materials in biomedical devices due to their biocompatibility and biodegradability. Medical devices such as actuators and sensors, energy harvesting devices, and active scaffolds for neural tissue engineering are continually explored. Sensors and actuators from piezoelectric materials can convert flow rate, pressure, etc., to generate energy or consume it. This paper consists of using smart materials to design medical devices and provide a greater understanding of the piezoelectric effect in the medical industry presently. A greater understanding of piezoelectricity is necessary regarding the future development and industry challenges. Keywords: polymers, smart materials, piezoelectric materials, inorganic materials, organic materials, biomedical devices Affiliations:
Zaszczyńska A. | - | IPPT PAN | Gradys A. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
|  |
11. |
Zaszczyńska A., Sajkiewicz P.Ł., Gradys A., Tymkiewicz R., Urbanek O., Kołbuk D., Influence of process-material conditions on the structure and biological properties of electrospun polyvinylidene fluoride fibers,
BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/bpasts.2020.133368, Vol.68, No.3, pp.627-633, 2020 Abstract: Polyvinylidene fluoride (PVDF) is one of the most important piezoelectric polymers. Piezoelectricity in PVDF appears in polar β and ɣ phases. Piezoelectric fibers obtained by means of electrospinning may be used in tissue engineering (TE) as a smart analogue of the natural extracellular matrix (ECM). We present results showing the effect of rotational speed of the collecting drum on morphology, phase content and in vitro biological properties of PVDF nonwovens. Morphology and phase composition were analyzed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), respectively. It was shown that increasing rotational speed of the collector leads to an increase in fiber orientation, reduction in fiber diameter and considerable increase of polar phase content, both b and g. In vitro cell culture experiments, carried out with the use of ultrasounds in order to generate electrical potential via piezoelectricity, indicate a positive effect of polar phases on fibroblasts. Our preliminary results demonstrate that piezoelectric PVDF scaffolds are promising materials for tissue engineering applications, particularly for neural tissue regeneration, where the electric potential is crucial. Keywords: scaffolds, electrospinning, polyvinylidene fluoride, tissue engineering Affiliations:
Zaszczyńska A. | - | IPPT PAN | Sajkiewicz P.Ł. | - | IPPT PAN | Gradys A. | - | IPPT PAN | Tymkiewicz R. | - | IPPT PAN | Urbanek O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN |
|  |
12. |
Gadomska‐Gajadhur A.♦, Kruk A.♦, Ruśkowski P.♦, Sajkiewicz P., Dulnik J., Chwojnowski A.♦, Original method of imprinting pores in scaffolds for tissue engineering,
Polymers for Advanced Technologies, ISSN: 1042-7147, DOI: 10.1002/pat.5091, pp.1-13, 2020 Abstract: Results of the preparation of biodegradable porous scaffolds using an original modification of a wet phase inversion method were presented. Influence of gelatin non‐woven as a non‐classic pore precursor and polyvinylpyrrolidone, Pluronic as classic pore precursors on the structure of obtained scaffolds was analyzed. It was shown that the addition of gelatin non‐wovens enables the preparation of scaffolds, which allow for the growth of cells (size, distribution, and shape of pores). Mechanical properties of the obtained cell scaffolds were determined. The influence of pore precursors on mass absorption of scaffolds against isopropanol and plasma was investigated. Interaction of scaffolds with a T‐lymphocyte line (Jurkat) and with fibroblasts (L929) was investigated. Obtained scaffolds are not cytotoxic and can be used as implants, for example, the regeneration of cartilage tissue. Keywords: cell cultures, cytotoxic, fibroblasts, imprinted scaffolds Affiliations:
Gadomska‐Gajadhur A. | - | other affiliation | Kruk A. | - | Warsaw University of Technology (PL) | Ruśkowski P. | - | Warsaw University of Technology (PL) | Sajkiewicz P. | - | IPPT PAN | Dulnik J. | - | IPPT PAN | Chwojnowski A. | - | Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL) |
|  |
13. |
Neisiany R.E.♦, Enayati M.S., Sajkiewicz P., Pahlevanneshan Z.♦, Ramakrishna S.♦, Insight into the current directions in functionalized nanocomposite hydrogels,
Frontiers in Materials, ISSN: 2296-8016, DOI: 10.3389/fmats.2020.00025, Vol.7, pp.25-1-8, 2020 Abstract: Since the introduction of tissue engineering as an encouraging method for the repair and regeneration of injured tissue, there have been many attempts by researchers to construct bio-mimetic scaffolds which mimic the native extracellular matrix, with the aim of promoting cell growth, cell proliferation, and restoration of the tissue's native functionality. Among the different materials and methods of scaffold fabrication, one particularly promising class of materials, hydrogels, has been extensively studied, with the inclusion of nano-scaled materials into hydrogels leading to the creation of an exciting new generation of nanocomposites, known as nanocomposite hydrogels. To closely mimic the native tissue behavior, scientists have recently focused on the functionalization of incorporated nanomaterials via chiral biomolecules, with reported results showing great potential. The current article aims to introduce a perspective of nano-scaled cellulose as a promising nanomaterial which can be multi-functionalized for the fabrication of nanocomposite hydrogels with applications in tissue engineering and drug delivery systems. This article also briefly reviews the recently reported literature on nanocomposite hydrogels incorporated with chiral functionalized nanomaterials. Such knowledge paves the path for the development of tailored hydrogels toward practical applications. Keywords: scaffold, nanocomposite hydrogels, biodegradable hydrogels, chiral biomolecules, self-healing Affiliations:
Neisiany R.E. | - | Isfahan University of Technology (IR) | Enayati M.S. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Pahlevanneshan Z. | - | Payame Noor University (IR) | Ramakrishna S. | - | National University of Singapore (SG) |
|  |
14. |
von Tiedemann P.♦, Maciol K.♦, Preis J.♦, Sajkiewicz P., Frey H.♦, Rapid one-pot synthesis of tapered star copolymers via ultra-fast coupling of polystyryllithium chain ends,
Polymer Chemistry, ISSN: 1759-9954, DOI: 10.1039/C8PY01656A, Vol.10, No.14, pp.1762-1768, 2019 Abstract: Highly efficient stoichiometric coupling of sterically hindered polystyryllithium (PS-Li) chain ends was achieved using tetra[3-(chloro-dimethylsilyl)propyl]silane (TCDMSPS) as the linking agent. Based on the disparate reactivities of isoprene (I, rI = 11.0) and styrene (S, rS = 0.049) in the anionic copolymerization in nonpolar media, poly(isoprene0.5-grad-styrene0.5) (P(I0.5-grad-S0.5)) tapered 4-arm star copolymers were synthesized in only two steps. The tapered 4-arm star copolymers (Mwtargeted = 40 to 160 kg mol^-1) were synthesized with high star functionalities f (Mw,star/Mw,arm = 3.68 - 3.98), low dispersity (Ð = 1.06 - 1.15) and minimal residual precursor content (2-8 wt%), avoiding fractionation or other purification methods. Coupling kinetics measurements revealed that for the synthesis of polystyrene (PS) 4-arm stars (12 kg mol^-1) a coupling efficiency of 98% was already achieved within 2 minutes. All star polymers were analyzed by size exclusion chromatography (SEC) viscometry with universal calibration (UC) as well as NMR spectroscopy. Well-defined nanofibers from the tapered copolymer stars were obtained via electrospinning. Affiliations:
von Tiedemann P. | - | Johannes Gutenberg University (DE) | Maciol K. | - | Johannes Gutenberg University (DE) | Preis J. | - | PSS Polymer Standards Service GmbH (DE) | Sajkiewicz P. | - | IPPT PAN | Frey H. | - | Johannes Gutenberg University (DE) |
|  |
15. |
Enayati M.S.♦, Neisiany R.E.♦, Sajkiewicz P., Behzad T.♦, Denis P., Pierini F., Effect of nanofiller incorporation on thermomechanical and toughness of poly (vinyl alcohol)-based electrospun nanofibrous bionanocomposites,
Theoretical and Applied Fracture Mechanics, ISSN: 0167-8442, DOI: 10.1016/j.tafmec.2018.11.006, Vol.99, pp.44-50, 2019 Abstract: The current work studies the electrospun poly (vinyl alcohol) (PVA) nanofibers and its nanocomposites including nanohydroxy apatite (nHAp) and nHAp/cellulose nanofibers (CNFs), emphasizing the impact of nanofillers on the toughness of nanofibers. PVA nanofibers were incorporated with 10 wt% of nHAp and then various amounts of CNF were added to subsequent PVA/nHAp fibrous nanocomposites. The morphology of nonwoven mats was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). While neat PVA nanofibers were smooth and uniform in thickness, the nanofiller loading resulted in thinner fibers with less uniformity. Furthermore, the thermal properties of the nonwoven network of fibers were characterized employing thermogravimetric analysis (TGA). Although the maximum loss mass temperature of PVA was partially reduced upon addition of nanofillers, the onset of decomposition was not altered. The mechanical characterizations were performed using static tensile and dynamic mechanical analysis (DMA). Compared to neat PVA mats, the tensile test of nanocomposites mats demonstrated the significant increase in Young's modulus; however, strain at break was dramatically reduced. In addition, the fracture work was assessed from the area under the stress-strain curve, which showed brittleness of fibrous nanocomposites due to the nanofiller incorporation. Field emission SEM (FE-SEM) was employed to scan the fracture surface of stretched fibers. The increase in modulus of electrospun mats was also shown by DMA in frequency mode. In parallel, both tensile test and DMA confirmed the change in fracture of PVA fibers from a tough to brittle mode, due to the nanofiller addition. Keywords: electrospun nanocomposites, nanofillers, toughness, mechanical properties Affiliations:
Enayati M.S. | - | Isfahan University of Technology (IR) | Neisiany R.E. | - | Isfahan University of Technology (IR) | Sajkiewicz P. | - | IPPT PAN | Behzad T. | - | Isfahan University of Technology (IR) | Denis P. | - | IPPT PAN | Pierini F. | - | IPPT PAN |
|  |
16. |
Jeznach O., Kołbuk D., Sajkiewicz P., Aminolysis of various aliphatic polyesters in a form of nanofibers and films,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym11101669, Vol.11, No.10, pp.1669-1-16, 2019 Abstract: Surface functionalization of polymer scaffolds is a method used to improve interactions of materials with cells. A frequently used method for polyesters is aminolysis reaction, which introduces free amine groups on the surface. In this study, nanofibrous scaffolds and films of three different polyesters–polycaprolactone (PCL), poly(lactide-co-caprolactone) (PLCL), and poly(l-lactide) (PLLA) were subjected to this type of surface modification under the same conditions. Efficiency of aminolysis was evaluated on the basis of ninhydrin tests and ATR–FTIR spectroscopy. Also, impact of this treatment on the mechanical properties, crystallinity, and wettability of polyesters was compared and discussed from the perspective of aminolysis efficiency. It was shown that aminolysis is less efficient in the case of nanofibers, particularly for PCL nanofibers. Our hypothesis based on the fundamentals of classical high speed spinning process is that the lower efficiency of aminolysis in the case of nanofibers is associated with the radial distribution of crystallinity of electrospun fiber with more crystalline skin, strongly inhibiting the reaction. Moreover, the water contact angle results demonstrate that the effect of free amino groups on wettability is very different depending on the type and the form of polymer. The results of this study can help to understand fundamentals of aminolysis-based surface modification. Keywords: aminolysis, polyester, electrospinning, nanofibers, film, surface chemical modification Affiliations:
Jeznach O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
|  |
17. |
Cegielska O., Sajkiewicz P., Targeted drug delivery systems for the treatment of glaucoma: most advanced systems review,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym11111742, Vol.11, No.11, pp.1742-1-18, 2019 Abstract: Each year, new glaucoma drug delivery systems are developed. Due to the chronic nature of the disease, it requires the inconvenient daily administration of medications. As a result of their elution from the eye surface and penetration to the bloodstream through undesired permeation routes, the bioavailability of active compounds is low, and systemic side effects occur. Despite numerous publications on glaucoma drug carriers of controlled drug release kinetics, only part of them consider drug permeation routes and, thus, carriers' location, as an important factor affecting drug delivery. In this paper, we try to demonstrate the importance of the delivery proximal to glaucoma drug targets. The targeted delivery can significantly improve drug bioavailability, reduce side effects, and increase patients' compliance compared to both commercial and scientifically developed formulations that can spread over the eye surface or stay in contact with conjunctival sac. We present a selection of glaucoma drug carriers intended to be placed on cornea or injected into the aqueous humor and that have been made by advanced materials using hi-tech forming methods, allowing for effective and convenient sustained antiglaucoma drug delivery. Keywords: hydrogels, nanofibers, electrospinning, glaucoma, ophthalmology Affiliations:
Cegielska O. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
|  |
18. |
Niemczyk-Soczyńska B., Gradys A., Kołbuk D., Krzton-Maziopa A.♦, Sajkiewicz P., Crosslinking kinetics of methylcellulose qqueous solution and its potential as a scaffold for tissue engineering,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym11111772, Vol.11, No.11, pp.1772-1-17, 2019 Abstract: Thermosensitive, physically crosslinked injectable hydrogels are in the area of interests of various scientific fields. One of the representatives of this materials group is an aqueous solution of methylcellulose. At ambient conditions, methylcellulose (MC) is a sol while on heating up to 37 °C, MC undergoes physical crosslinking and transforms into a gel. Injectability at room temperature, and crosslinkability during subsequent heating to physiological temperature raises hopes, especially for tissue engineering applications. This research work aimed at studying crosslinking kinetics, thermal, viscoelastic, and biological properties of MC aqueous solution in a broad range of MC concentrations. It was evidenced by Differential Scanning Calorimetry (DSC) that crosslinking of MC is a reversible two-stage process, manifested by the appearance of two endothermic effects, related to the destruction of water cages around methoxy groups, followed by crosslinking via the formation of hydrophobic interactions between methoxy groups in the polymeric chains. The DSC results also allowed the determination of MC crosslinking kinetics. Complementary measurements of MC crosslinking kinetics performed by dynamic mechanical analysis (DMA) provided information on the final storage modulus, which was important from the perspective of tissue engineering applications. Cytotoxicity tests were performed using mouse fibroblasts and showed that MC at low concentration did not cause cytotoxicity. All these efforts allowed to assess MC hydrogel relevance for tissue engineering applications. Keywords: methylcellulose, thermosensitive hydrogel, crosslinking kinetics, DSC, DMA, cellular tests Affiliations:
Niemczyk-Soczyńska B. | - | IPPT PAN | Gradys A. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Krzton-Maziopa A. | - | Warsaw University of Technology (PL) | Sajkiewicz P. | - | IPPT PAN |
|  |
19. |
Denis P., Wrzecionek M.♦, Gadomska‐Gajadhur A.♦, Sajkiewicz P., Poly(glycerol sebacate)–poly(l-lactide) nonwovens. Towards attractive electrospun material for tissue engineering,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym11122113, Vol.11, No.12, pp.2113-1-26, 2019 Abstract: Two types of poly(glycerol sebacate) (PGS) prepolymers were synthesized and electrospun with poly(l-lactic acid) (PLA), resulting in bicomponent nonwovens. The obtained materials were pre-heated in a vacuum, at different times, to crosslink PGS and investigate morphological and structural dependencies in that polymeric, electrospun system. As both PGS and PLA are sensitive to pre-heating (crosslinking) conditions, research concerns both components. More interest is focused on the properties of PGS, considering further research for mechanical properties and subsequent experiments with PGS synthesis. Electrospinning of PGS blended with PLA does not bring difficulties, but obtaining elastomeric properties of nonwovens is problematic. Even though PGS has many potential advantages over other polyesters when soft tissue engineering is considered, its full utilization via the electrospinning process is much harder in practice. Further investigations are ongoing, especially with the promising PGS prepolymer with a higher esterification degree and its variations. Keywords: electrospinning, degradable polymers, synthesis, structure, crosslinking Affiliations:
Denis P. | - | IPPT PAN | Wrzecionek M. | - | other affiliation | Gadomska‐Gajadhur A. | - | Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL) | Sajkiewicz P. | - | IPPT PAN |
|  |
20. |
Zaszczyńska A., Sajkiewicz P., Gradys A., Kołbuk D., Urbanek O., Cellular studies on piezoelectric polyvinylidene fluoride nanofibers subjected to ultrasounds stimulations,
ENGINEERING OF BIOMATERIALS / INŻYNIERIA BIOMATERIAŁÓW, ISSN: 1429-7248, Vol.22, No.153, pp.25-25, 2019 |  |
21. |
Enayati M.S., Behzad T.♦, Sajkiewicz P., Bagheri R.♦, Ghasemi-Mobarakeh L.♦, Pierini F., Theoretical and experimental study of the stiffness of electrospun composites of poly(vinyl alcohol), cellulose nanofibers, and nanohydroxy apatite,
CELLULOSE, ISSN: 0969-0239, DOI: 10.1007/s10570-017-1601-6, Vol.25, No.1, pp.65-75, 2018 Abstract: The present study aims to theoretically model and verify the mechanical behavior of electrospun fibers of poly(vinyl alcohol) (PVA) reinforced by nanohydroxy apatite (nHAp) and cellulose nanofibers (CNF), the three composites designated as PVA/nHAp, PVA/CNF, and PVA/nHAp/CNF. Tensile tests and AFM nanoindentation studies were used to measure tensile modulus of electrospun scaffolds and single fibers respectively. Halpin–Tsai and Ouali models were applied to predict the stiffness of electrospun mats. Theoretical analysis according to the Halpin–Tsai model showed that CNF have no preferred orientation in the electrospun fibers, particularly at higher filler content. Additionally, this model provided a better prediction than Ouali model, especially at lower filler content. Theoretical models based on the geometry of an unit cell in open-cell structure such as honeycomb, tetrakaidecahedron and cube models simulate electrospun scaffolds. Among the structural models for analysis of porous scaffolds, the honeycomb model showed the best prediction, tetrakaidecahedron model—a moderate one, and cube model was the worst. In general, it was proved by both experiment and theory that the porous structure of electrospun mat caused significant modulus reduction of nanocomposites. Keywords: Nanocomposites, Cellulose nanofibers, Electrospinning, Modulus Affiliations:
Enayati M.S. | - | IPPT PAN | Behzad T. | - | Isfahan University of Technology (IR) | Sajkiewicz P. | - | IPPT PAN | Bagheri R. | - | Isfahan University of Technology (IR) | Ghasemi-Mobarakeh L. | - | Isfahan University of Technology (IR) | Pierini F. | - | IPPT PAN |
|  |
22. |
Sajkiewicz P., Heljak M.K.♦, Gradys A., Choińska E.♦, Rumiński S.♦, Jaroszewicz T.♦, Bissenik I.♦, Święszkowski W.♦, Degradation and related changes in supermolecular structure of poly(caprolactone) in vivo conditions,
Polymer Degradation and Stability, ISSN: 0141-3910, DOI: 10.1016/j.polymdegradstab.2018.09.023, Vol.157, pp.70-79, 2018 Abstract: The degradation in vivo and its effect on the supermolecular structure of poly(caprolactone) was examined. Poly(caprolactone) (PCL) samples were prepared in the form of porous scaffolds implanted into rat calvarial defects. The degradation was investigated by means of gel permeation chromatography, wide angle X-ray scattering (WAXS), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The study showed that the observed decrease of PCL crystallinity during degradation is accompanied by reduction of crystal size and/or perfection. The observed phenomenon could be explained by the presence of the high content of the low mobile fraction of investigated polymer, consisting not only almost 50% of crystal fraction but also most probably relatively high fraction of s.c. rigid amorphous fraction (RAF). Considering the type of structure characterized by the dominance of low mobile fraction, it is expected that the degradation will mainly concern these fractions, which in turn will lead to a decrease in the degree of crystallinity as well as crystal size and/or perfection. Keywords: PCL degradation, In-vivo conditions, Crystallinity, Rigid amorphous fraction Affiliations:
Sajkiewicz P. | - | IPPT PAN | Heljak M.K. | - | Warsaw University of Technology (PL) | Gradys A. | - | IPPT PAN | Choińska E. | - | Warsaw University of Technology (PL) | Rumiński S. | - | Medical University of Warsaw (PL) | Jaroszewicz T. | - | Warsaw University of Technology (PL) | Bissenik I. | - | Warsaw University of Life Sciences (PL) | Święszkowski W. | - | other affiliation |
|  |
23. |
Dulnik J., Kołbuk D., Denis P., Sajkiewicz P., The effect of a solvent on cellular response to PCL/gelatin and PCL/collagen electrospun nanofibres,
EUROPEAN POLYMER JOURNAL, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2018.05.010, Vol.104, pp.147-156, 2018 Abstract: Bicomponent polycaprolactone/gelatin and polycaprolactone/collagen fibres were formed by electrospinning using two kinds of solvents: a representative of commonly used solvents with this polymer composition, highly toxic hexafluoroisopropanol (HFIP) and alternative, less harmful one, the mixture of acetic (AA) and formic (FA) acids. Both material types were subjected to investigations of structure and in-vitro cellular activity. Viscosity and Fourier transform infrared spectroscopy (FTIR) measurements shown that the type of solvent used influences the structure of solution and conformation of polymer molecules. In-vitro quantitative tests as well as cell culture morphology observations proved that materials electrospun with the use of 'green' solvents can yield similar results to those obtained by made with toxic ones. Slightly better cellular response to materials electrospun from HFIP can be explained by relatively well dispersed components within the fibre and more expanded conformation of molecules, resulting in better exposition of RGD (Arg-Gly-Asp) binding sites to cells' integrin receptors. Keywords: Cellular tests, Electrospinning, Biopolymers, Viscosity, Solvents Affiliations:
Dulnik J. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Denis P. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
|  |
24. |
Enayati M.S.♦, Behzad T.♦, Sajkiewicz P., Rafienia M.♦, Bagheri R.♦, Ghasemi-Mobarakeh L.♦, Kołbuk D., Pahlevanneshan Z.♦, Bonakdar S.H.♦, Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering,
Journal of Biomedical Materials Research Part A, ISSN: 1549-3296, DOI: 10.1002/jbm.a.36309, Vol.106, No.4, pp.1111-1120, 2018 Abstract: The article is focused on the role of nanohydroxy apatite (nHAp) and cellulose nanofibers (CNFs) as fillers in the electrospun poly (vinyl alcohol) (ES-PVA) nanofibers for bone tissue engineering (TE). Fibrous scaffolds of PVA, PVA/nHAp (10 wt.%), and PVA/nHAp(10 wt.%)/CNF(3 wt.%) were successfully fabricated and characterized. Tensile test on electrospun PVA/nHAp10 and PVA/nHAp10/CNF3 revealed a three-fold and seven-fold increase in modulus compared with pure ES-PVA (45.45 ± 4.77). Although, nanofiller loading slightly reduced the porosity percentage, all scaffolds had porosity higher than 70%. In addition, contact angle test proved the great hydrophilicity of scaffolds. The presence of fillers reduced in vitro biodegradation rate in PBS while accelerates biomineralization in simulated body fluid (SBF). Furthermore, cell viability, cell attachment, and functional activity of osteoblast MG-63 cells were studied on scaffolds showing higher cellular activity for scaffolds with nanofillers. Generally, the obtained results confirm that the 3-componemnt fibrous scaffold of PVA/nHAp/CNF has promising potential in hard TE. Keywords: electrospinning, PVA bionanocomposites, scaffolds, bone tissue engineering, cell culture Affiliations:
Enayati M.S. | - | Isfahan University of Technology (IR) | Behzad T. | - | Isfahan University of Technology (IR) | Sajkiewicz P. | - | IPPT PAN | Rafienia M. | - | Isfahan University of Medical Sciences (IR) | Bagheri R. | - | Isfahan University of Technology (IR) | Ghasemi-Mobarakeh L. | - | Isfahan University of Technology (IR) | Kołbuk D. | - | IPPT PAN | Pahlevanneshan Z. | - | Payame Noor University (IR) | Bonakdar S.H. | - | Pasteur Institute of Iran (IR) |
|  |
25. |
Jeznach O., Kołbuk D., Sajkiewicz P., Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration,
Journal of Biomedical Materials Research Part A, ISSN: 1549-3296, DOI: 10.1002/jbm.a.36449, Vol.106, No.10, pp.2762-2776, 2018 Abstract: Cartilage loss due to age‐related degeneration and mechanical trauma is a significant and challenging problem in the field of surgical medicine. Unfortunately, cartilage tissue can be characterized by the lack of regenerative ability. Limitations of conventional treatment strategies, such as auto‐, allo‐ and xenografts or implants stimulate an increasing interest in the tissue engineering approach to cartilage repair. This review discusses the application of polymer‐based scaffolds, with an emphasis on hydrogels in cartilage tissue engineering. We highlight injectable hydrogels with various micro‐ and nanoparticles, as they constitute a novel and attractive type of scaffolds. We discuss advantages, limitations and future perspectives of injectable nanocomposite hydrogels for cartilage tissue regeneration. Keywords: polymers, hydrogels, injectable hydrogels, injectable nanocomposite hydrogels, cartilage repair, cartilage tissue engineering Affiliations:
Jeznach O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
|  |
26. |
Niemczyk B., Sajkiewicz P., Kołbuk D., Injectable hydrogels as novel materials for central nervous system regeneration,
Journal of neural engineering, ISSN: 1741-2560, DOI: 10.1088/1741-2552/aacbab, Vol.15, No.5, pp.051002-1-15, 2018 Abstract: Approach. Injuries of the central nervous system (CNS) can cause serious and permanent disability due to limited regeneration ability of the CNS. Presently available therapies are focused on lesion spreading inhibition rather than on tissue regeneration. Recent investigations in the field of neural tissue engineering indicate extremely promising properties of novel injectable and non-injectable hydrogels which are tailored to serve as biodegradable scaffolds for CNS regeneration. Objective. This review discusses the state-of-the-art and barriers in application of novel polymer-based hydrogels without and with nanoparticles for CNS regeneration. Main results. Pure hydrogels suffer from lack of similarities to natural neural tissue. Many of the biological studies indicated nano-additives in hydrogels may improve their topography, mechanical properties, electroconductivity and biological functions. The most promising biomaterials which meet the requirements of CNS tissue engineering seem to be injectable thermosensitive hydrogels loaded with specific micro-and nanoparticles. Significance. We highlight injectable hydrogels with various micro-and nanoparticles, because of novelty and attractiveness of this type of materials for CNS regeneration and future development perspectives. Keywords: hydrogels, nanoparticles, injectable, microparticles, nanofibers, central nervous system Affiliations:
Niemczyk B. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN |
|  |
27. |
Urbanek O., Pierini F., Choińska E.♦, Sajkiewicz P., Bil M.♦, Święszkowski W.♦, Effect of hydroxyapatite nanoparticles addition on structure properties of poly(L-lactide-co-glycolide) after gamma sterilization,
Polymer Composites, ISSN: 0272-8397, DOI: 10.1002/pc.24028, Vol.39, No.4, pp.1023-1031, 2018 Abstract: Physical and chemical factors resulting from the sterilization methods may affect the structure and properties of the materials which undergo this procedure. Poly(l-lactide-co-glicolide) (PLGA) is commonly used for medical applications, but, due to its inadequate mechanical properties, it is not recommended for load-bearing applications. One of the methods for improving PLGA mechanical properties is addition of hydroxyapatite nanoparticles (nHAp). The aim of this study was to evaluate the effect of nanoparticles addition on PLGA structure and properties after gamma radiation. According to our results, reduction of the molecular mass caused by gamma radiation was lower for PLGA with nHAp addition. Differential scanning calorimetry (DSC) analysis indicates an increase of crystallinity caused both by nHAp and gamma radiation. The first phenomenon can be explained by heteronucleation, while the second one is most probably related to higher molecular mobility of degrading polymer. Moreover, addition of nanoparticles increases thermal stability and affects the Young's modulus changes after gamma radiation. Affiliations:
Urbanek O. | - | IPPT PAN | Pierini F. | - | IPPT PAN | Choińska E. | - | Warsaw University of Technology (PL) | Sajkiewicz P. | - | IPPT PAN | Bil M. | - | Warsaw University of Technology (PL) | Święszkowski W. | - | other affiliation |
|  |
28. |
Urbanek O., Sajkiewicz P., Pierini F., The effect of polarity in the electrospinning process on PCL/chitosan nanofibres' structure, properties and efficiency of surface modification,
POLYMER, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2017.07.064, Vol.124, pp.168-175, 2017 Abstract: The aim of this research was to study the effect of charge polarity applied to the spinning nozzle on the structure and properties of polycaprolactone/chitosan (PCL/CHT) blends, in particular the efficiency of further surface modification by chondroitin sulphate (CS). The observed differences in the morphology and properties of fibres formed at different polarities were interpreted in terms of molecular interactions occurring in the system. FTIR results indicate stronger PCL-chitosan interactions at negative polarity, resulting in lower PCL crystallinity and crystal size distribution determined by DSC, as well as lower wettability. The charge polarity influences PCL/CHT fibre morphology and tailors some of their properties, e.g. wettability, mechanical properties and the efficiency of surface modification. Better efficiency of CS attachment was observed at negative polarity using atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) is most probably related to higher chitosan content at the fibres' surface being attracted by the negative external potential. Keywords: Polycaprolactone/chitosan nanofibres, Charge potential effect in electrospinning, Polycaprolactone-chitosan interactions Affiliations:
Urbanek O. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Pierini F. | - | IPPT PAN |
|  |
29. |
Urbanek O., Sajkiewicz P., Pierini F., Czerkies M., Kołbuk D., Structure and properties of polycaprolactone/chitosan nonwovens tailored by solvent systems,
Biomedical Materials, ISSN: 1748-6041, DOI: 10.1088/1748-605X/aa5647, Vol.12, No.1, pp.015020-1-12, 2017 Abstract: Electrospinning of chitosan blends is a reasonable idea to prepare fibre mats for biomedical applications. Synthetic and natural components provide, for example, appropriate mechanical strength and biocompatibility, respectively. However, solvent characteristics and the polyelectrolyte nature of chitosan influence the spinnability of these blends. In order to compare the effect of solvent on polycaprolactone/chitosan fibres, two types of the most commonly used solvent systems were chosen, namely 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and acetic acid (AA)/formic acid (FA). Results obtained by various experimental methods clearly indicated the effect of the solvent system on the structure and properties of electrospun polycaprolactone/chitosan fibres. Viscosity measurements confirmed different polymer–solvent interactions. Various molecular interactions resulting in different macromolecular conformations of chitosan influenced its spinnability and properties. HFIP enabled fibres to be obtained whose average diameter was less than 250 nm while maintaining the brittle and hydrophilic character of the nonwoven, typical for the chitosan component. Spectroscopy studies revealed the formation of chitosan salts in the case of the AA/FA solvent system. Chitosan salts visibly influenced the structure and properties of the prepared fibre mats. The use of AA/FA caused a reduction of Young's modulus and wettability of the proposed blends. It was confirmed that wettability, mechanical properties and the antibacterial effect of polycaprolactone/chitosan fibres may be tailored by selecting an appropriate solvent system. The MTT cell proliferation assay revealed an increase of cytotoxicity to mouse fibroblasts in the case of 25% w/w of chitosan in electrospun nonwovens. Keywords: chitosan, electrospinning, PCL/chitosan fibres, solvent system, chitosan salts Affiliations:
Urbanek O. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Pierini F. | - | IPPT PAN | Czerkies M. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN |
|  |
30. |
Gradys A., Sajkiewicz P., Zhuravlev E.♦, Schick C.♦, Kinetics of isothermal and non-isothermal crystallization of poly(vinylidene fluoride) by fast scanning calorimetry,
POLYMER, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2015.11.020, Vol.82, pp.40-48, 2016 Abstract: Crystallization from melt of poly(vinylidene fluoride) was studied by thin film chip calorimetry at cooling rates from 500 to 100,000 Ks−1 and isothermally down to 76°C. At ca. 70°C, for cooling rates higher than 2000 Ks−1, there appears a change in crystallization from high temperature α phase to low temperature β phase. The amorphous state is preserved at cooling rate 100,000 Ks−1. Analysis of the crystallization kinetics with Ziabicki model reveals maximum of the steady-state crystallization rate of β phase as 2200 s−1 at 22°C, and the highest crystallization rate of α phase as 200 s−1 at 70°C. Approximation of the temperature dependent steady-state crystallization rate with the Turnbull and Fisher nucleation model results in the equilibrium melting temperatures 227 and 173°C for the α and β phase, respectively, and in the energy barrier for short-distance transport, ED, as 70–80 kJ mol−1 at high supercooling. Keywords: Poly(vinylidene fluoride), Ultra-fast calorimetry, Crystallization kinetics Affiliations:
Gradys A. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Zhuravlev E. | - | University of Rostock (DE) | Schick C. | - | University of Rostock (DE) |
|  |
31. |
Dulnik J., Denis P., Sajkiewicz P., Kołbuk D., Choińska E.♦, Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system,
Polymer Degradation and Stability, ISSN: 0141-3910, DOI: 10.1016/j.polymdegradstab.2016.05.022, Vol.130, pp.10-21, 2016 Abstract: Bicomponent polycaprolactone/gelatin and polycaprolactone/collagen nanofibers formed by electrospinning using various solvents were subjected to biodegradation and compared. Hexafluoroisopropanol (HFIP) was used as a reference solvent, while the second, alternative solvent system was the mixture of acetic acid (AA) with formic acid (FA). Biodegradation of investigated materials was manifested mainly by the gelatin leaching, including collagen which is indeed denaturated to gelatin during electrospinning, leading to nanofibers erosion. There was no molecular degradation of PCL during 90 days of biodegradation procedure as deduced from no change in the elongation stress at break. The rate of biopolymer leaching was very fast from all materials during the first 24 h of biodegradation, being related to surface leaching, followed by a slower rate leaching from deeper material layers. Mass measurements showed much faster biopolymer leaching from nanofibers electrospun from AA/FA than from HFIP because of strongly emulsive nature of the solution in the former case. Irrespective of the solvent used, the leaching rate increased with initial content of gelatin. The analysis of Young modulus during biodegradation indicated complex mechanism of changes, including biopolymer mass loss, increase of PCL crystallinity and partial gelatin renaturation. Keywords: Bicomponent nanofibers, Biodegradation, Biopolymer Affiliations:
Dulnik J. | - | IPPT PAN | Denis P. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Choińska E. | - | Warsaw University of Technology (PL) |
|  |
32. |
Enayati M.S.♦, Behzad T.♦, Sajkiewicz P., Bagheri R.♦, Ghasemi‑Mobarakeh L.♦, Łojkowski W.♦, Pahlevanneshan Z.♦, Ahmadi M.♦, Crystallinity study of electrospun poly (vinyl alcohol) nanofibers: effect of electrospinning, filler incorporation, and heat treatment,
IRANIAN POLYMER JOURNAL, ISSN: 1026-1265, DOI: 10.1007/s13726-016-0455-3, Vol.25, No.7, pp.647-659, 2016 Abstract: This study aims to explore crystallinity variations of polyvinyl alcohol (PVA) as a result of electrospinning, filler addition, and heat treatment. Pure PVA and PVA nanocomposite fibers containing only nanohydroxy apatite (nHAp) and together with cellulose nanofibers (CNF) were electrospun. Electrospun nanofibers were heat treated at 180°C for 8 h. The morphology of electrospun fibers was evaluated by scanning electron microscopy (SEM) while Fourier transform infrared spectroscopy, differential scanning calorimetry, and wide angle X-ray scattering were used to analyze nanofibers crystallinity. Un-treated electrospun nanofibers were shrank and lost their porous structure in water, while heat treatment of nanofibers caused stabilization of fibrous mats in boiling water. It was concluded that the crystallinity of electrospun PVA were considerably reduced compared to PVA powder due to formation of metastable—small and/or defective crystals. Adding small content (1 wt%) of nHAp led to increase in electrospun nanofibers crystallinity. However, incorporation of higher content of nHAp and CNF caused reduction of crystallinity most probably due to possible interactions among components which interrupt the orientation of macromolecules. All analyzing methods proved the crystallinity enhancement of nanofibers upon heat treatment which can be attributed mostly to water evaporation from electrospun fibers structure. Keywords: Polyvinyl alcohol, Crystallinity, Electrospinning, Nanofiber, Nanofiller, Heat treatment Affiliations:
Enayati M.S. | - | Isfahan University of Technology (IR) | Behzad T. | - | Isfahan University of Technology (IR) | Sajkiewicz P. | - | IPPT PAN | Bagheri R. | - | Isfahan University of Technology (IR) | Ghasemi‑Mobarakeh L. | - | Isfahan University of Technology (IR) | Łojkowski W. | - | other affiliation | Pahlevanneshan Z. | - | Payame Noor University (IR) | Ahmadi M. | - | Isfahan University of Technology (IR) |
|  |
33. |
Kołbuk D., Guimond-Lischer S.♦, Sajkiewicz P., Maniura-Weber K.♦, Fortunato G.♦, Morphology and surface chemistry of bicomponent scaffolds in terms of mesenchymal stromal cell viability,
Journal of Bioactive and Compatible Polymers, ISSN: 0883-9115, DOI: 10.1177/0883911515621571, Vol.1, pp.1-14, 2016 Abstract: Biological interaction between cells and scaffolds is mediated through events at surfaces. Proteins present in the culture medium adsorb on substrates, generating a protein adlayer that triggers further downstream events governing cell adhesion. Polymer blends often combine the properties of the individual components, for example, can provide mechanical as well as surface properties in one fibre. Therefore, mixtures of synthetic polycaprolactone and gelatin as a denatured form of collagen were electrospun at selected conditions and polymer weight ratios. Fibre morphologies and chemical properties of the surfaces were analysed. These scaffolds were seeded with human mesenchymal stromal cells and their viability was studied. Gelatin addition to polycaprolactone leads to a reduction in fibre diameter. A linear increase in gelatin at the fibre surface was observed in function of the weighed polymers, except for polycaprolactone/gelatin fibres incorporating equal weight ratios. Thereby, a depletion of gelatin at the fibre surface is stated for equally mixed polymers. The depletion of gelatin at the fibre surface is most probably due to hydrophobic interactions between hydrophobic segments of polycaprolactone and gelatin, affecting the spinning mechanism and thus fibre structure. Furthermore, polycaprolactone/gelatin blends show enhanced wettability properties compared to pure gelatin, at least partly due to molecular segregation. Results of in vitro studies reveal an increase in cellular viability and proliferation for cells cultivated on nanofibres containing gelatin, caused by the cell-attractive surface composition as well as the hydrophilic nature of the scaffolds. Contact guidance of cells seeded on parallelised fibres is observed, and DNA tests show evidently enhanced cell numbers on nanofibres containing 20 wt% of gelatin. Keywords: Mesenchymal stromal cells, electrospinning, surface, blends, biocompatibility, polymers, bioactivity Affiliations:
Kołbuk D. | - | IPPT PAN | Guimond-Lischer S. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Sajkiewicz P. | - | IPPT PAN | Maniura-Weber K. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Fortunato G. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) |
|  |
34. |
Enayati M.S.♦, Behzad T.♦, Sajkiewicz P., Bagheri R.♦, Ghasemi‑Mobarakeh L.♦, Kuśnieruk S.♦, Rogowska-Tylman J.♦, Pahlevanneshan Z.♦, Choińska E.♦, Święszkowski W.♦, Fabrication and characterization of electrospun bionanocomposites of poly (vinyl alcohol)/ nanohydroxyapatite/cellulose nanofibers,
International Journal of Polymeric Materials and Polymeric Biomaterials, ISSN: 0091-4037, DOI: 10.1080/00914037.2016.1157798, Vol.65, No.13, pp.660-674, 2016 Abstract: The aim of the present study was preparation, optimization, and systematic characterization of electrospun bionanocomposite fibers based on polyvinyl alcohol (PVA) as matrix and nanohydroxy apatite (nHAp) and cellulose nanofibers (CNF) as nanoreinforcements. The presence of nHAp and nHAp-CNF affected the morphology of electrospun mats and reduced fiber diameter, particularly at a higher content of nanofillers. The obtained results of FTIR, DSC, and WAXS proved the crystallinity reduction of electrospun nancomposites. Both nHAp and nHAp-CNF addition led to a significant increase of Young modulus with the highest stiffness for nanocomposite fibers at 10 wt% of nHAp and 3 wt% of CNF. Keywords: Bionanocomposite, cellulose nanofibers, electrospinning, nanohydroxy apatite Affiliations:
Enayati M.S. | - | Isfahan University of Technology (IR) | Behzad T. | - | Isfahan University of Technology (IR) | Sajkiewicz P. | - | IPPT PAN | Bagheri R. | - | Isfahan University of Technology (IR) | Ghasemi‑Mobarakeh L. | - | Isfahan University of Technology (IR) | Kuśnieruk S. | - | other affiliation | Rogowska-Tylman J. | - | other affiliation | Pahlevanneshan Z. | - | Payame Noor University (IR) | Choińska E. | - | Warsaw University of Technology (PL) | Święszkowski W. | - | other affiliation |
|  |
35. |
Kołbuk D., Guimond-Lischer S.♦, Sajkiewicz P., Maniura-Weber K.♦, Fortunato G.♦, The Effect of Selected Electrospinning Parameters on Molecular Structure of Polycaprolactone Nanofibers,
International Journal of Polymeric Materials and Polymeric Biomaterials, ISSN: 0091-4037, DOI: 10.1080/00914037.2014.945209, Vol.64, No.7, pp.365-377, 2015 Abstract: The effect of electrospinning parameters on morphology, molecular, and supermolecular structure of polycaprolactone (PCL) fibers was analyzed, with respect to tissue engineering applications. Fibers morphology and structure are mainly determined by solution concentration and collector type. Applied voltage does not significantly influence supermolecular structure (crystallinity) and mechanical stiffness. There is correlation between changes in structure and proliferation of 3T3 cells as evidenced by in vitro study. Processing window of optimal scaffolds is relatively wide, however, variation of electrospinning parameters do not significantly affect their biological functionality. Keywords: 3T3 cells, crystallinity, electrospinning, molecular orientation, polycaprolactone, porosity, tissue engineering Affiliations:
Kołbuk D. | - | IPPT PAN | Guimond-Lischer S. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Sajkiewicz P. | - | IPPT PAN | Maniura-Weber K. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Fortunato G. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) |
|  |
36. |
Denis P., Dulnik J., Sajkiewicz P., Electrospinning and Structure of Bicomponent Polycaprolactone/Gelatin Nanofibers Obtained Using Alternative Solvent System,
International Journal of Polymeric Materials and Polymeric Biomaterials, ISSN: 0091-4037, DOI: 10.1080/00914037.2014.945208, Vol.64, No.7, pp.354-364, 2015 Abstract: Bicomponent polycaprolactone/gelatin (PCL/Gt) nanofibers were successfully formed for the first time by electrospinning using a novel polymer–solvent system with solvents being alternative to the commonly used toxic solvents like fluorinated alcohols. The mixture of acetic acid (AA) with formic acid (FA; 90:10) was applied. Stable electrospinning was possible despite the fact the mixture of PCL and gelatin in AA/FA solvent showed emulsive structure. From the practical perspective, there is no doubt that it is possible to obtain PCL/Gt fibers using AA/FA mixture with morphology similar to that for fibers spun from hexafluoroisopropanol (HFIP) solutions. Keywords: Alternative solvents, electrospinning, gelatin, nanofibers, polycaprolactone, structure Affiliations:
Denis P. | - | IPPT PAN | Dulnik J. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
|  |
37. |
Sajkiewicz P., Kołbuk D., Electrospinning of gelatin for tissue engineering – molecular conformation as one of the overlooked problems,
JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION, ISSN: 0920-5063, DOI: 10.1080/09205063.2014.975392, Vol.25, No.18, pp.2009-2022, 2014 Abstract: Gelatin is one of the most promising materials in tissue engineering as a scaffold component. This biopolymer indicates biocompatibility and bioactivity caused by the existence of specific amino acid sequences, being preferred sites for interactions with cells, with high similarity to natural extracellular matrix. The present paper does not aspire to be a full review of electrospinning of gelatin and gelatin containing nanofibers as scaffolds in tissue engineering. It is focused on the still open question of the role of the higher order structures of gelatin in scaffold’s bioactivity/functionality. Gelatin molecules can adopt various conformations depending on temperature, solvent, pH, etc. Our review indicates the potential ways for formation of α-helix conformation during electrospinning and the methods of further structure stabilization. It is intuitively expected that the native α-helix conformation appearing as a result of partial renaturation of gelatin can be beneficial from the viewpoint of bioactivity of scaffolds, providing thus a much cheaper alternative approach as opposed to expensive electrospinning of native collagen. Keywords: gelatin, molecular conformation, electrospinning, nanofibers, scaffolds Affiliations:
Sajkiewicz P. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN |
|  |
38. |
Sajkiewicz P., Brzeska J.♦, Denis P., Sikorska W.♦, Kowalczuk M.♦, Rutkowska M.♦, The preliminary studies of a structure and electrospinning of new polyurethanes based on synthetic atactic poly[(R, S)-3-hydroxybutyrate],
BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.2478/bpasts-2014-0006, Vol.62, No.1, pp.55-60, 2014 Abstract: Novel polyurethanes based on synthetic, atactic poly[(R, S)-3-hydroxybutyrate] (a-PHB) and polycaprolactone (PCL) or polyoxytetramethylene (PTMG) diols were synthesized. It was shown that the presence of a-PHB within soft segments reduces crystallinity of PUR. Because of the low melting temperature for polyurethanes with PCL in soft segments, at this stage of work, electrospinning was limited to polyurethanes containing PTMG and a-PHB. Polyurethane containing 80% of PTMG and 20% of a-PHB was electrospun at various parameters from hexafluoro-2-propanole solution, resulting in formation of fibers with the average diameter ca. 2 μm. The fiber diameter decreased with decreasing polymer concentration in a solution and was practically insensitive to the needle-collector distance in the applied range of distances. Keywords: polyurethane, polyhydroxybutyrate, electrospinning, scaffolds Affiliations:
Sajkiewicz P. | - | IPPT PAN | Brzeska J. | - | other affiliation | Denis P. | - | IPPT PAN | Sikorska W. | - | other affiliation | Kowalczuk M. | - | other affiliation | Rutkowska M. | - | other affiliation |
|  |
39. |
Gradys A., Sajkiewicz P., Determination of the melting enthalpy of beta phase of poly(vinylidene fluoride),
E-POLYMERS, ISSN: 1618-7229, DOI: 10.1515/epoly-2013-0119, Vol.13, No.1, pp.203-216, 2014 Abstract: Wide Angle X-ray Scattering (WAXS), Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared spectroscopy (FTIR) analyses of phase composition and of thermal properties of PVDF samples, crystallized at temperatures 27 - 155°C by casting from N,N-dimethyl formamide (DMF) solution, are reported. Samples obtained at 27°C contain only β crystal phase and with increase of casting temperature content of β phase decreases in favor of α phase. Evaluation of combined: phase content (WAXS) and melting heat (DSC), leads to two fold higher than for 100 % α phase value of 100% β melting enthalpy, ΔHβ0= 219.7 J.g-1, which may be justified by strong polar interactions in β phase TTT conformation. The relation ΔHβ0 > ΔHα0 leads either to the thermodynamic stability of β phase in whole temperature range (if Tmβ0 ≥ Tmα0) or to the limited temperature range of thermodynamic stability of α phase (if Tmβ0 < Tmα0). Keywords: pvdf, WAXS, FTIR, DSC, crystallinity, polymorphism Affiliations:
Gradys A. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
|  |
40. |
Kołbuk D., Sajkiewicz P., Maniura-Weber K.♦, Fortunato G.♦, Structure and morphology of electrospun polycaprolactone/gelatine nanofibres,
EUROPEAN POLYMER JOURNAL, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2013.04.036, Vol.49, pp.2052-2061, 2013 Abstract: Blends of polycaprolactone (PCL) and gelatine (Ge), being effective materials for tissue engineering strategies, were electrospun at various conditions and polymer weight ratios. The morphology, the supermolecular structure as well as the mechanical properties of resulting submicron sized fibres have been analyzed in relation to electrospinning conditions and PCL/Ge weight ratio. Compared to pure PCL, Ge addition leads to large reduction of fibre diameter and finally to changes of fibre morphology. For parallelised fibres collected on a rotating drum, preferred molecular orientation of PCL crystals is found. With increasing Ge content a general reduction of molecular orientation is observed. In addition, there is peculiar dependence of polycaprolactone crystallinity on the content of Ge, showing maximum at low Ge concentration (20%) as determined by differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS). Such a trend can be explained by hydrophobic interactions in the system containing PCL, gelatine and water, being additional driving forces for crystallization of nonpolar PCL molecules. The presence of water within investigated blend systems has been evidenced experimentally using thermal gravimetric analysis (TGA). Young’s modulus of nonwovens, as determined by uniaxial tensile testing, indicates the effect of additivity of the stiffness of both polymers as well as the influence of preferred molecular orientation. Additional experiments were performed using collagen (Col) as a biopolymeric alternative to Ge. WAXS results show evidently amorphous structure of Col within the blended fibres, indicating strong tendency for denaturation of collagen into gelatine under the influence of hexafluoroisopropanol as a solvent. Keywords: Electrospinning, Nanofibres, Blend, Gelatine polycaprolactone, Molecular structure Affiliations:
Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Maniura-Weber K. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Fortunato G. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) |
|  |
41. |
Alhazov D.♦, Gradys A., Sajkiewicz P., Arinstein A.♦, Zussman E.♦, Thermo-mechanical behavior of electrospun thermoplastic polyurethane nanofibers,
EUROPEAN POLYMER JOURNAL, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2013.09.028, Vol.49, pp.3851-3856, 2013 Abstract: Analysis of the thermo-mechanical behavior of electrospun thermoplastic polyurethane (TPU) block co-polymer nanofibers (glass transition temperature ∼−50°C) is presented. Upon heating, nanofibers began to massively contract, at ∼70°C, whereas TPU cast films started to expand. Radial wide-angle X-ray scattering (WAXS) profiles of the nanofibers and the films showed no diffraction peaks related to crystals, whereas their amorphous halo had an asymmetric shape, which can be approximated by two components, associated with hard and soft segments. During heating, noticeable changes in the contribution of these components were only observed in nanofibers. These changes, which were accompanied with an endothermic DSC peak, coinciding with the start of the nanofibers contraction, can be attributed to relaxation of an oriented stretched amorphous phase created during electrospinning. Such structure relaxation becomes possible when a portion of the hard segment clusters, forming an effective physical network, is destroyed upon heating. Keywords: Block-copolymer, Electrospinning, Nanofibers, Thermo-mechanical properties Affiliations:
Alhazov D. | - | Technion-Israel Institute of Technology (IL) | Gradys A. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Arinstein A. | - | Technion-Israel Institute of Technology (IL) | Zussman E. | - | Technion-Israel Institute of Technology (IL) |
|  |
42. |
Kołbuk D., Sajkiewicz P., Denis P., Choińska E.♦, Investigations of polycaprolactone/gelatin blends in terms of their miscibility,
BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.2478/bpasts-2013-0066, Vol.61, No.3, pp.629-632, 2013 Abstract: Synthetic and natural polymers blends represent a new brand of materials with application in wound healing, scaffolds or drug delivery systems. Polycaprolactone/gelatin (PCL/Gt) blends were analyzed in terms of their miscibility. The PCL structure was investigated as a function of Gt content. Changes in the PCL spherulitic structure with Gt content were investigated by a polarizing-interference microscope. The analysis of the glass transition temperature (Tg) of both components as a function of PCL/Gt ratio by differential scanning calorimetry indicates that the system of polycaprolactone/gelatin belongs to a type of s.c. compatible system, being intermediate between miscible and immiscible systems. There is possibility of very limited miscibility of both components. Supplementary wide angle X-ray scattering results are presented. Keywords: lends, compatibility, miscibility, polycaprolactone, gelatin Affiliations:
Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Denis P. | - | IPPT PAN | Choińska E. | - | Warsaw University of Technology (PL) |
|  |
43. |
Kołbuk D., Sajkiewicz P., Kowalewski T.A., Optical birefringence and molecular orientation of electrospun polycaprolactone fibers by polarizing-interference microscopy,
EUROPEAN POLYMER JOURNAL, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2011.11.012, Vol.48, pp.275-283, 2012 Abstract: The potential of polarizing-interference Pluta microscope for determination of optical birefringence of individual nanofibers formed by electrospinning was shown. This technique can be applied for measurements of fiber birefringence, practically at diameter above 300 nm. The molecular orientation of individual polycaprolactone (PCL) nanofibers was determined from birefringence assuming the same orientation of both phases, crystal and amorphous. The molecular orientation was determined using DSC crystallinity, crystal intrinsic birefringence calculated for the first time for PCL from bond polarizabilities as well as estimated value of amorphous intrinsic birefringence. Our results indicate that the birefringence and thus molecular orientation are strongly inhomogeneous along the nanofibers, reflecting a complex nature of forces acting during electrospinning process. The average molecular orientation is weak if any, being dependent together with fiber thickness and crystallinity on electrospinning parameters, like applied voltage, concentration and type of solvent. The obtained results indicate that the average molecular orientation displays similar dependence on applied voltage as fiber diameter. Relatively low melting temperature of electrospun nanofibers suggests low crystal size and/or high concentration of defects in crystals. This observation corresponds with low crystallinity and molecular orientation, indicating together relatively low degree of crystal ordering due to high rate of cooling and solvent evaporation during electrospinning, limiting thus crystallization process. Keywords: Nanofibers, Electrospinning, Birefringence, Polarizing-interference microscopy, Polycaprolactone Affiliations:
Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN |
|  |
44. |
Sajkiewicz P., Gradys A., Misztal-Faraj B., Quantitative analysis of crystallization kinetics by light depolarization technique. Possibilities and limitations,
EUROPEAN POLYMER JOURNAL, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2010.07.011, Vol.46, pp.2051-2062, 2010 Abstract: The kinetics of isothermal crystallization of various polymers was investigated by light depolarization technique (LDT) using the new setup with direct registration of depolarization ratio. Experimental data were analyzed using new method proposed by Ziabicki who shown that degree of crystallinity is a non-linear function of degree of depolarization, crystal thickness, and its birefringence. Other experimental methods were involved providing supplementary information on crystal thickness (SAXS) and allowing comparison of crystallization kinetics (WAXS, DSC). The advantage of LDT relies on high sampling rate allowing on-line measurements and lack of inertia effects that exist in other methods like calorimetry. The limitations of the applicability of the method are discussed. The method needs supplementary information not only on crystal thickness but also on variable optical birefringence of real crystals. Our results show that LDT can be used in a simple way for investigation of crystallization kinetics at relatively high temperatures, providing large and perfect crystals. In such a case it is sufficient to use crystal intrinsic birefringence and final crystal thickness typical at particular temperature of crystallization. On the other hand, depolarization ratio combined with measurements by other methods (crystallinity and crystal thickness) can be used for estimation of crystal birefringence. Keywords: Polymer, Crystallization kinetics, Light depolarization, Crystal birefringence Affiliations:
Sajkiewicz P. | - | IPPT PAN | Gradys A. | - | IPPT PAN | Misztal-Faraj B. | - | IPPT PAN |
|  |
45. |
Sajkiewicz P., Gradys A., Ziabicki A., Misztal-Faraj B., On the metastability of beta phase in isotactic polypropylene: Experiments and numerical simulation,
E-POLYMERS, ISSN: 1618-7229, No.124, pp.1-20, 2010 Abstract: Phase transitions in isotactic polypropylene were investigated during isothermal crystallization and heating after isothermal crystallization using various experimental techniques. The results obtained by wide angle x-ray scattering (WAXS), light depolarization technique (LDT), differential scanning calorimetry (DSC) and optical microscopy show that crystallization of isotactic polypropylene can result in simultaneous formation of two crystal modifications, alpha and beta. There is clear experimental evidence that beta phase tends to convert into alpha modification during crystallization as well as during subsequent heating. Experimental results are compared with numerical simulation performed according to the model of nucleation-controlled phase transitions in multiphase systems. The results of simulation show that beta phase is not thermodynamically stable in any temperature range. The reason for the appearance of beta phase is related to low interfacial tension of melt vs. beta. It has been also shown that maximum crystallinity reached in experiments does not exceed 40–50% in agreement with the concept of constrained amorphous phase. Keywords: polypropylene, polymorphism, metastability, crystallization Affiliations:
Sajkiewicz P. | - | IPPT PAN | Gradys A. | - | IPPT PAN | Ziabicki A. | - | IPPT PAN | Misztal-Faraj B. | - | IPPT PAN |
|  |
46. |
Misztal-Faraj B., Sajkiewicz P., Savytskyy H.♦, Bonchyk O.♦, Gradys A., Ziabicki A., Following phase transitions by depolarizing light intensity. The experimental setup,
POLYMER TESTING, ISSN: 0142-9418, DOI: 10.1016/j.polymertesting.2008.09.012, Vol.28, pp.36-41, 2009 Abstract: A new setup for light depolarization measurements was designed. Two innovative elements have been introduced. The first is an electronic system which enables depolarization ratio to be registered directly. The second is a system of temperature control allowing effective implementation of a temperature–time program according to the particular requirements. Direct registration of depolarization ratio instead of intensity of depolarized light for individual components (parallel and perpendicular), as is performed in the usual apparatus, allows elimination of light scattering effects because of the insensitivity of depolarization ratio to the scattering level. Application of the new setup was shown for crystallization and melting of isotactic polypropylene (i-PP). Comparison of phase transitions in i-PP, as registered by light depolarization and DSC, indicates some differences. Possible sources of the observed differences are discussed. Keywords: Light depolarization, Polymers, Crystallization, Melting, Kinetics of phase transitions Affiliations:
Misztal-Faraj B. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Savytskyy H. | - | Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NASU (UA) | Bonchyk O. | - | Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NASU (UA) | Gradys A. | - | IPPT PAN | Ziabicki A. | - | IPPT PAN |
|  |
47. |
Di Lorenzo M.R.♦, Sajkiewicz P., Gradys A., La Pietra P.♦, Optimization of melting conditions for the analysis of crystallization kinetics of poly(3-hydroksybutyrate),
E-POLYMERS, ISSN: 1618-7229, Vol.27, pp.1-12, 2009 Abstract: Studies of kinetics of polymer crystallization are generally performed by heating the material above the melting point, in order to erase previous thermal and mechanical history, followed by rapid cooling to the desired crystallization temperature or by cooling at a constant rate. For poly(3-hydroxybutyrate) this procedure implies some degradation of the polymer chain, which starts below the onset of melting. In this article the effects of melting conditions on the subsequent crystallization kinetics are discussed. It is shown that in order to sufficiently cancel memories of previous crystalline order of the analyzed PHB, it is necessary to bring the material at a temperature higher than 192 °C. Thermal treatments conducted at lower temperatures are not sufficient to destroy all solid aggregates, and crystallization of PHB has an anticipated onset of crystallization due to nucleation occurring via self-seeding. The chain degradation attained upon exposure at high temperatures has much lesser influence on crystallization kinetics than incomplete melting, with some effects detectable on the spherulitic morphology and on the final degree of crystallinity. Keywords: PHB, thermal history, crystallization, degradation Affiliations:
Di Lorenzo M.R. | - | other affiliation | Sajkiewicz P. | - | IPPT PAN | Gradys A. | - | IPPT PAN | La Pietra P. | - | other affiliation |
|  |
48. |
Sajkiewicz P., Di Lorenzo M.L.♦, Gradys A., Transient nucleation in isothermal crystallization of poly(3-hydroksybuty-rate),
E-POLYMERS, ISSN: 1618-7229, Vol.85, pp.1-16, 2009 Abstract: The time dependence of nucleation rate in isothermal crystallization of poly(3-hydroxybutyrate) was experimentally shown, both in heterogeneous and homogeneous nucleation. The time dependence of nucleation rate is one of the important limitations for the applicability of the simplified form of Kolmogoroff- Avrami-Evans model with time independent kinetic characteristics. The presented results are interpreted in terms of non-steady-state cluster size distribution underlying transient nature of nucleation. The relaxation time needed for reaching a steady-state cluster size distribution and thus steady-state nucleation rate is relatively long, exceeding the time of exhaustion of heterogeneities. The relaxation time estimated from homogeneous process was tens of seconds in the temperature range between 83 and 120 oC. Application of Arrhenius law allows estimation of relaxation time in broader temperature range, showing an increase of relaxation time with decreasing temperature. Keywords: PHB, isothermal crystallization, nucleation rate Affiliations:
Sajkiewicz P. | - | IPPT PAN | Di Lorenzo M.L. | - | other affiliation | Gradys A. | - | IPPT PAN |
|  |
49. |
Gradys A., Sajkiewicz P., Adamovsky S.♦, Minakov A.A.♦, Schick C.♦, Crystallization of poly(vinylidene fluoride) during ultra-fast cooling,
THERMOCHIMICA ACTA, ISSN: 0040-6031, DOI: 10.1016/j.tca.2007.05.023, Vol.461, pp.153-157, 2007 Abstract: Melt-crystallization of polyvinylidene fluoride (PVDF) was investigated in non-isothermal mode at ultra-high cooling rates ranging between 30–3000 K/s as well as at constant temperatures after quenching at 6000 K/s. An increase of the cooling rate above 150 K/s leads to the formation of betaphase manifested by a low temperature shoulder of crystallization exotherm in addition to the alphamodification. At the cooling rates above 2000 K/s there is only low temperature exothermic peak that is attributed to the crystallization of pure betamodification. Isothermal crystallization was possible to realize at 110 oC as the lowest, resulting in form. Much higher crystallization rate in submicrogram samples, as compared to standard DSC experiments, is also reported. Keywords: Polyvinylidene fluoride, Crystallization, Ultra-fast calorimetry, Polymorphism Affiliations:
Gradys A. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Adamovsky S. | - | Universität Rostock (DE) | Minakov A.A. | - | other affiliation | Schick C. | - | University of Rostock (DE) |
|  |
50. |
Di Lorenzo M.L.♦, Sajkiewicz P., La Pietra P.♦, Gradys A., Irregularly shaped DSC exotherms in the analysis of polimer crystallization,
POLYMER BULLETIN, ISSN: 0170-0839, DOI: 10.1007/s00289-006-0621-4, Vol.57, pp.713-721, 2006 Abstract: This article details a study of irregularly shaped DSC exotherms of poly(3-hydroxybutyrate) (PHB) developed during isothermal and non-isothermal crystallization. Due to the extreme purity of the polymer, PHB crystallization is mainly initiated by homogeneous nucleation, with the formation of very large spherulites, especially under slow nucleation conditions. When the number of growing spherulites is low, the evolution of latent heat is very sensitive to every act of nucleation as well as to the space limitations in the process of growth, resulting in non-monotonous development of latent heat, with sudden increases and decreases in crystallization rates. This results in non conventional DSC exotherms, under given crystallization conditions, characterized by spikes or shoulders associated to nucleation of new spherulites. Keywords: PHB, crystallization, nucleation, DSC Affiliations:
Di Lorenzo M.L. | - | other affiliation | Sajkiewicz P. | - | IPPT PAN | La Pietra P. | - | other affiliation | Gradys A. | - | IPPT PAN |
|  |
51. |
Sajkiewicz P., Hashimoto T.♦, Saijo K.♦, Gradys A., Intermediate phase in poly(ethylene) as elucidated by the WAXS. Analysis of crystallization kinetics,
POLYMER, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2004.11.018, Vol.46, pp.513-521, 2005 Abstract: The analysis of WAXS profiles for various polyethylenes indicates that the proper description of a structure needs the introduction of a kind of ‘third phase’ in addition to the classical crystalline and amorphous phases. The structure of the additional phase is intermediate between that of the amorphous and crystalline phase. With increasing branch content and molecular weight the intermediate phase becomes more similar to the structure of amorphous phase. The experimental evidence for the intermediate phase is derived not only from the crude approximation of WAXS profiles based on the two phase model but also from the unexpected behavior of the parameters of amorphous halo during crystallization. When crystallization is started, an analysis based upon two-phase model results in an apparent increase of the diffraction angle and width of amorphous halo with time above the values anticipated from the range before the start of crystallization. This is caused by the fact that the amorphous fitting function tries to cover a peak of the intermediate component that appears between morphous halo and (110) reflection of crystalline phase. The conventionally applied two-phase model leads to several serious errors in determination of structural parameters of both phases. The analysis of crystallization kinetics using three-phase model provides additional information on the nature of crystallization itself. Keywords: Polyethylene, Crystallization, Intermediate phase Affiliations:
Sajkiewicz P. | - | IPPT PAN | Hashimoto T. | - | other affiliation | Saijo K. | - | other affiliation | Gradys A. | - | IPPT PAN |
|  |
52. |
Gradys A., Sajkiewicz P., Minakov A.A.♦, Adamovsky S.♦, Schick C.♦, Hashimoto T.♦, Saijo K.♦, Crystallization of polypropylene at various cooling rates,
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2005.08.167, Vol.413-414, pp.442-446, 2005 Abstract: Crystallization of polypropylene (PP) can result in formation of different crystal modifications depending on external conditions. The mechanisms of formation of various crystal modifications in polypropylene are still under discussion.We have investigated non-isothermal melt crystallization of isotactic polypropylene at cooling rates ranging from 1 up to 180,000 K/min using two types of differential scanning calorimeters-standard device Perkin–Elmer DSC Pyris-1 and ultra-fast calorimeter. Additional results were obtained by means of wide angle X-ray scattering and optical microscopy. At cooling rates below 6000 K/min there is only one exothermic peak corresponding to simultaneous crystallization ofalpha andbeta modifications. At cooling rates higher than 6000 K/min there is additional low temperature DSC peak corresponding to formation of mesomorphic phase. At the rates higher than 36,000 K/min there is no trace of formation of any ordered phase. In our opinion this complex behavior observed during crystallization of polypropylene can be explained using the concept of metastable phases. An increase ofbeta content in samples with quinacridone pigment has been observed only at very low cooling rates, corresponding to high temperatures of crystallization and low homogeneous nucleation rate. Keywords: Polypropylene, Crystallization, Utra-fast calorimetry, Crystallographic modifications, Metastable phases Affiliations:
Gradys A. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Minakov A.A. | - | other affiliation | Adamovsky S. | - | Universität Rostock (DE) | Schick C. | - | University of Rostock (DE) | Hashimoto T. | - | other affiliation | Saijo K. | - | other affiliation |
|  |
53. |
Sajkiewicz P., Zmiany rozkładu orientacji kryształów polietylenu w procesie topnienia pod naprężeniem (Praca doktorska),
Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.12, pp.1-134, 1989 | |
54. |
Sajkiewicz P., Wasiak A.♦, Aproksymacyjna metoda wyznaczania orientacji płaszczyzn krystalograficznych,
Prace IPPT - IFTR Reports, ISSN: 2299-3657, No.35, pp.1-30, 1988 | |