Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Lemma Teshome Tufa


Ostatnie publikacje
1.  Nwaji N., Hyojin K., Mahendra G., Lemma Teshome T., Juyong G., Abhishek S., Nirpendra S., Jaebeom L., Sulfur vacancy induced Co3S4@CoMo2S4 nanocomposite as functional electrode for high performance supercapacitor, Journal of Materials Chemistry A, ISSN: 2050-7488, DOI: 10.1039/d2ta08820g, Vol.11, pp.Journal of Material Chemistry A-3640-3652, 2024

Streszczenie:
Vacancy engineering offers an attractive approach to improving the surface properties and electronic
structure of transition metal nanomaterials. However, simple and cost-effective methods for introducing
defects into nanomaterials still face great challenges. Herein, we propose a facile room temperature
two-step technique that utilizes Fe as the dopant to enhance S vacancies in cobalt-based metal–organic
frameworks (MOFs). The Fe–Co-MOF was converted into a hollow Fe–Co3S4 confined in CoMo2S4 to
form Fe–Co3S4@CoMo2S4 nanosheets. The as-prepared material showed enhanced charge storage
kinetics and excellent properties as an electrode material for supercapacitors. The obtained
nanostructure displayed a high specific capacitance (980.3 F g−1 at 1 A g−1) and excellent cycling stability
(capacity retention of 96.5% after 6000 cycles at 10 A g−1). Density functional theory (DFT) calculations
show that introducing defects into the nanostructures leads to more electrons appearing near the Fermi
level, which is beneficial for electron transfer during electrochemical processes. Thus, this work provides
a rational cost-effective strategy for introducing defects into transition metal sulfides and may serve as
a potential means to prepare electrode materials for energy storage.

Afiliacje autorów:
Nwaji N. - inna afiliacja
Hyojin K. - inna afiliacja
Mahendra G. - inna afiliacja
Lemma Teshome T. - inna afiliacja
Juyong G. - inna afiliacja
Abhishek S. - inna afiliacja
Nirpendra S. - inna afiliacja
Jaebeom L. - Lexington High School (US)
200p.
2.  Mahendra G., Huu-Quang N., Sohyun K., Birhanu Bayissa G., Lemma Teshome T., Nwaji N., My-Chi Thi N., Juyong G., Jaebeom L., Rugged forest morphology of magnetoplasmonic nanorods that collect maximum light for photoelectrochemical water splitting, Nano Micro Small Journal, ISSN: 1613-6829, DOI: 10.1002/smll.202302980, Vol.19, pp.Small-2302980, 2024

Streszczenie:
A feasible nanoscale framework of heterogeneous plasmonic materials and
proper surface engineering can enhance photoelectrochemical (PEC)
water-splitting performance owing to increased light absorbance, efficient
bulk carrier transport, and interfacial charge transfer. This article introduces a
new magnetoplasmonic (MagPlas) Ni-doped Au@FexOy nanorods (NRs)
based material as a novel photoanode for PEC water-splitting. A two stage
procedure produces core–shell Ni/Au@FexOy MagPlas NRs. The first-step is
a one-pot solvothermal synthesis of Au@FexOy. The hollow FexOy nanotubes
(NTs) are a hybrid of Fe2O3 and Fe3O4, and the second-step is a sequential
hydrothermal treatment for Ni doping. Then, a transverse magnetic
field-induced assembly is adopted to decorate Ni/Au@FexOy on FTO glass to
be an artificially roughened morphologic surface called a rugged forest,
allowing more light absorption and active electrochemical sites. Then, to
characterize its optical and surface properties, COMSOL Multiphysics
simulations are carried out. The core–shell Ni/Au@FexOy MagPlas NRs
increase photoanode interface charge transfer to 2.73 mAcm−2 at 1.23 V RHE.
This improvement is made possible by the rugged morphology of the NRs,
which provide more active sites and oxygen vacancies as the hole transfer
medium. The recent finding may provide light on plasmonic photocatalytic
hybrids and surface morphology for effective PEC photoanodes.

Afiliacje autorów:
Mahendra G. - inna afiliacja
Huu-Quang N. - inna afiliacja
Sohyun K. - inna afiliacja
Birhanu Bayissa G. - inna afiliacja
Lemma Teshome T. - inna afiliacja
Nwaji N. - IPPT PAN
My-Chi Thi N. - inna afiliacja
Juyong G. - inna afiliacja
Jaebeom L. - Lexington High School (US)
3.  Nwaji N., Akinoglu E.M., Lin Q., Teshome Tufa L., Sharan A., Singh N., Wang X., Giersig M., Lee J., Surface Modulation of Fe3O4 Confined in Porous Molybdenum-Based Nanoplatform for Enhanced Hydrogen Production, Energy Technology, ISSN: 2194-4296, DOI: 10.1002/ente.202201061, Vol.11, No.2, pp.2201061-1-9, 2023

Streszczenie:
The integration of different precursor components to form single nanostructures via one-step synthesis process is mostly restricted by the compatibility and complexity of components. Herein, a highly uniform, spherical, hollowed, and hierarchical iron oxide-wrapped Mo–polydopamine is synthesized using a one-pot liquid-phase reaction at room temperature. Mo2C is doped with Fe3O4 to harness the rich electrons in Fe dopants for effective lowering of the unoccupied d-orbitals in Mo. The surface conductivity of the as-prepared nanostructures is enhanced by decorating them with gold nanoparticles utilizing strong interaction of Au and amine. The nanocomposites are converted into carbidic hollowed structures via an annealing process without any distortion in morphology. The well-organized structure and nanosize of the particles provide efficient catalytic performance for hydrogen evolution reaction in acidic media. MoFe–C@Au exhibits a very positive onset potential of 2 mV, low Tafel slope of 50.1 mV dec^-1, and remarkable long- term stability.

Słowa kluczowe:
electrocatalysts,hierarchical syntheses,hydrogen evolution,molybdenum,polydopamine

Afiliacje autorów:
Nwaji N. - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
Lin Q. - inna afiliacja
Teshome Tufa L. - inna afiliacja
Sharan A. - inna afiliacja
Singh N. - inna afiliacja
Wang X. - inna afiliacja
Giersig M. - IPPT PAN
Lee J. - Lexington High School (US)
100p.
4.  Cheru Fekadu M., Bedasa Abdisa G., Fedlu Kedir S., Birhanu Bayissa G., Nwaji N., Lemma Teshome T., Jaebeom L., Ni-Based Ultrathin Nanostructures for Overall Electrochemical Water Splitting, Material Chemistry Frontiers, ISSN: 2052-1537, DOI: 10.1039/D2QM00964A, Vol.7, pp.Material Chemistry Frontiers-194-215, 2023

Streszczenie:
Hydrogen produced by electrochemical water splitting is considered to be a sustainable fuel source, an
ideal way to solve the energy problem and its environmental challenges. However, industrial production
of hydrogen from water splitting is mainly hindered by sluggish kinetics of the oxygen evolution reaction
(OER) at the anode and the hydrogen evolution reaction (HER) at the cathode in an alkaline solution due
to the difficulty in forming binding protons. Thus, the construction of a highly active and cost-effective
catalyst with abundant oxygen vacancies is critical for enhancing the reaction efficiency and decreasing
the required overpotential. Due to earth-abundance and electrocatalytic activities, Ni-based ultrathin
nanostructures (Ni-utNSs) have attracted immense attention for overall water splitting. Herein, we have
presented a complete summary of recent advancements in Ni-utNSs for overall electrochemical water
splitting. After discussing unique advances in Ni-utNSs, we discussed their properties and crystal
structures. The HER, OER, and oxygen reduction reaction (ORR) mechanisms were briefly discussed. We
also discussed several Ni-utNS manufacturing techniques, as well as in situ and ex situ characterization
and computer modeling. Furthermore, the electrochemical water splitting of Ni-utNSs is addressed. This
review can help readers understand the recent progress of Ni-utNS catalysts and gain insight into the
rational design of Ni-utNS catalysts with high electrocatalytic activity.

Afiliacje autorów:
Cheru Fekadu M. - inna afiliacja
Bedasa Abdisa G. - inna afiliacja
Fedlu Kedir S. - inna afiliacja
Birhanu Bayissa G. - inna afiliacja
Nwaji N. - IPPT PAN
Lemma Teshome T. - inna afiliacja
Jaebeom L. - Lexington High School (US)

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024