Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Nirpendra Singh


Ostatnie publikacje
1.  Nwaji N., Hyojin K., Mahendra G., Lemma Teshome T., Juyong G., Abhishek S., Nirpendra S., Jaebeom L., Sulfur vacancy induced Co3S4@CoMo2S4 nanocomposite as functional electrode for high performance supercapacitor, Journal of Materials Chemistry A, ISSN: 2050-7488, DOI: 10.1039/d2ta08820g, Vol.11, pp.Journal of Material Chemistry A-3640-3652, 2024

Streszczenie:
Vacancy engineering offers an attractive approach to improving the surface properties and electronic
structure of transition metal nanomaterials. However, simple and cost-effective methods for introducing
defects into nanomaterials still face great challenges. Herein, we propose a facile room temperature
two-step technique that utilizes Fe as the dopant to enhance S vacancies in cobalt-based metal–organic
frameworks (MOFs). The Fe–Co-MOF was converted into a hollow Fe–Co3S4 confined in CoMo2S4 to
form Fe–Co3S4@CoMo2S4 nanosheets. The as-prepared material showed enhanced charge storage
kinetics and excellent properties as an electrode material for supercapacitors. The obtained
nanostructure displayed a high specific capacitance (980.3 F g−1 at 1 A g−1) and excellent cycling stability
(capacity retention of 96.5% after 6000 cycles at 10 A g−1). Density functional theory (DFT) calculations
show that introducing defects into the nanostructures leads to more electrons appearing near the Fermi
level, which is beneficial for electron transfer during electrochemical processes. Thus, this work provides
a rational cost-effective strategy for introducing defects into transition metal sulfides and may serve as
a potential means to prepare electrode materials for energy storage.

Afiliacje autorów:
Nwaji N. - inna afiliacja
Hyojin K. - inna afiliacja
Mahendra G. - inna afiliacja
Lemma Teshome T. - inna afiliacja
Juyong G. - inna afiliacja
Abhishek S. - inna afiliacja
Nirpendra S. - inna afiliacja
Jaebeom L. - Lexington High School (US)
200p.
2.  Nwaji N., Juyong G., Mahendra G., Hyojin K., Adewale Hammed P., Abhishek S., Nirpendra S., Jaebeom L., Defect engineered Fe3C@NiCo2S4 trojan nanospike derived from Metal Organic framework as Advanced electrode material for Hybrid supercapacitor., ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c04635, Vol.15, No.29, pp.ACS Applied Material Interfaces-34779–34788, 2024

Streszczenie:
The rational synthesis and tailoring of metal-organic frameworks (MOFs) with multifunctional micro/nanoarchitectures have emerged as a subject of significant academic interest owing to their promising potential for utilization in advanced energy storage devices. Herein, we explored a category of three-dimensional (3D) NiCo2S4 nanospikes that have been integrated into a 1D Fe3C microarchitecture using a chemical surface transformation process. The resulting electrode materials, i.e., Fe3C@NiCo2S4 nanospikes, exhibit immense potential for utilization in high-performance hybrid supercapacitors. The nanospikes exhibit an elevated specific capacity (1894.2 F g-1 at 1 A g-1), enhanced rate capability (59%), and exceptional cycling stability (92.5% with 98.7% Coulombic efficiency) via a charge storage mechanism reminiscent of a battery. The augmented charge storage characteristics are attributed to the collaborative features of the active constituents, amplified availability of active sites inherent in the nanospikes, and the proficient redox chemical reactions of multi-metallic guest species. When using nitrogen-doped carbon nanofibers as the anode to fabricate hybrid supercapacitors, the device exhibits high energy and power densities of 62.98 Wh kg-1 and 6834 W kg-1, respectively, and shows excellent long-term cycling stability (95.4% after 5000 cycles), which affirms the significant potential of the proposed design for applications in hybrid supercapacitors. The DFT study showed the strong coupling of the oxygen from the electrolyte OH- with the metal atom of the nanostructures, resulting in high adsorption properties that facilitate the redox reaction kinetics.

Słowa kluczowe:
defect engineering, Nanospike, advanced electrode, hybrid, MOF, Supercapacitor

Afiliacje autorów:
Nwaji N. - inna afiliacja
Juyong G. - inna afiliacja
Mahendra G. - inna afiliacja
Hyojin K. - IPPT PAN
Adewale Hammed P. - inna afiliacja
Abhishek S. - inna afiliacja
Nirpendra S. - inna afiliacja
Jaebeom L. - Lexington High School (US)
200p.
3.  Nwaji N., Akinoglu E.M., Lin Q., Teshome Tufa L., Sharan A., Singh N., Wang X., Giersig M., Lee J., Surface Modulation of Fe3O4 Confined in Porous Molybdenum-Based Nanoplatform for Enhanced Hydrogen Production, Energy Technology, ISSN: 2194-4296, DOI: 10.1002/ente.202201061, Vol.11, No.2, pp.2201061-1-9, 2023

Streszczenie:
The integration of different precursor components to form single nanostructures via one-step synthesis process is mostly restricted by the compatibility and complexity of components. Herein, a highly uniform, spherical, hollowed, and hierarchical iron oxide-wrapped Mo–polydopamine is synthesized using a one-pot liquid-phase reaction at room temperature. Mo2C is doped with Fe3O4 to harness the rich electrons in Fe dopants for effective lowering of the unoccupied d-orbitals in Mo. The surface conductivity of the as-prepared nanostructures is enhanced by decorating them with gold nanoparticles utilizing strong interaction of Au and amine. The nanocomposites are converted into carbidic hollowed structures via an annealing process without any distortion in morphology. The well-organized structure and nanosize of the particles provide efficient catalytic performance for hydrogen evolution reaction in acidic media. MoFe–C@Au exhibits a very positive onset potential of 2 mV, low Tafel slope of 50.1 mV dec^-1, and remarkable long- term stability.

Słowa kluczowe:
electrocatalysts,hierarchical syntheses,hydrogen evolution,molybdenum,polydopamine

Afiliacje autorów:
Nwaji N. - inna afiliacja
Akinoglu E.M. - University of Melbourne (AU)
Lin Q. - inna afiliacja
Teshome Tufa L. - inna afiliacja
Sharan A. - inna afiliacja
Singh N. - inna afiliacja
Wang X. - inna afiliacja
Giersig M. - IPPT PAN
Lee J. - Lexington High School (US)
100p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024