1. |
Zaszczyńska A., Kołbuk-Konieczny D., Gradys A. D., Sajkiewicz P. Ł., Development of Poly(methyl methacrylate)/nano-hydroxyapatite (PMMA/nHA) Nanofibers for Tissue Engineering Regeneration Using an Electrospinning Technique,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym16040531, Vol.16, No.4, pp.531-1-19, 2024Streszczenie: The study explores the in vitro biocompatibility and osteoconductivity of poly(methyl methacrylate)/nano-hydroxyapatite (PMMA/nHA) composite nanofibrous scaffolds for bone tissue engineering (BTE). Electrospun scaffolds, exhibiting both low and high fiber orientation, were investigated. The inclusion of hydroxyapatite nanoparticles enhances the osteoconductivity of the scaffolds while maintaining the ease of fabrication through electrospinning. SEM analysis confirms the high-quality morphology of the scaffolds, with successful incorporation of nHA evidenced by SEM-EDS and FTIR methods. DSC analysis indicates that nHA addition increases the PMMA glass transition temperature (Tg) and reduces stress relaxation during electrospinning. Furthermore, higher fiber orientation affects PMMA Tg and stress relaxation differently. Biological studies demonstrate the composite material’s non-toxicity, excellent osteoblast viability, attachment, spreading, and proliferation. Overall, PMMA/nHA composite scaffolds show promise for BTE applications. Słowa kluczowe: biomaterials, nanofibrous scaffolds, bone tissue engineering Afiliacje autorów:
Zaszczyńska A. | - | IPPT PAN | Kołbuk-Konieczny D. | - | IPPT PAN | Gradys A. D. | - | IPPT PAN | Sajkiewicz P. Ł. | - | IPPT PAN |
| | 100p. |
2. |
Altangerel A., Cegielska O., Kołbuk D., Kalaska B.♦, Sajkiewicz P.Ł., On-Demand Sequential Release of Dual Drug from pH-Responsive Electrospun Janus Nanofiber Membranes toward Wound Healing and Infection Control,
ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c13676, Vol.16, No.1, pp.153-165, 2023Streszczenie: Drugs against bacteria and abnormal cells, such as antibiotics and anticancer drugs, may save human lives. However, drug resistance is becoming more common in the clinical world. Nowadays, a synergistic action of multiple bioactive compounds and their combination with smart nanoplatforms has been considered an alternative therapeutic strategy to fight drug resistance in multidrug-resistant cancers and microorganisms. The present study reports a one-step fabrication of innovative pH-responsive Janus nanofibers loaded with two active compounds, each in separate polymer compartments for synergistic combination therapy. By dissolving one of the compartments from the nanofibers, we could clearly demonstrate a highly yielded anisotropic Janus structure with two faces by scanning electron microscopy (SEM) analysis. To better understand the distinctive attributes of Janus nanofibers, several analytical methods, such as X-ray diffraction (XRD), FTIR spectroscopy, and contact angle goniometry, were utilized to examine and compare them to those of monolithic nanofibers. Furthermore, a drug release test was conducted in pH 7.4 and 6.0 media since the properties of Janus nanofibers correlate significantly with different environmental pH levels. This resulted in the on-demand sequential codelivery of octenidine (OCT) and curcumin (CUR) to the corresponding pH stimulus. Accordingly, the antibacterial properties of Janus fibers against Escherichia coli and Staphylococcus aureus, tested in a suspension test, were pH-dependent, i.e., greater in pH 6 due to the synergistic action of two active compounds, and Eudragit E100 (EE), and highly satisfactory. The biocompatibility of the Janus fibers was confirmed in selected tests. Słowa kluczowe: Janus nanofiber, on-demand release, dual-drug, antibacterial activity, side-by-side electrospinning Afiliacje autorów:
Altangerel A. | - | IPPT PAN | Cegielska O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Kalaska B. | - | inna afiliacja | Sajkiewicz P.Ł. | - | IPPT PAN |
| | 200p. |
3. |
Gloc M.♦, Przybysz S.♦, Dulnik J., Kołbuk-Konieczny D., Wachowski M.♦, Kosturek R.♦, Ślęzak T.♦, Krawczyńska A.♦, Ciupiński ♦, A Comprehensive Study of a Novel Explosively Hardened Pure Titanium Alloy for Medical Applications,
Materials, ISSN: 1996-1944, DOI: 10.3390/ma16227188, Vol.16, No.22, pp.7188--1-19, 2023Streszczenie: Pure titanium is gaining increasing interest due to its potential use in dental and orthopedic applications. Due to its relatively weak mechanical parameters, a limited number of components manufactured from pure titanium are available on the market. In order to improve the mechanical parameters of pure titanium, manufacturers use alloys containing cytotoxic vanadium and aluminum. This paper presents unique explosive hardening technology that can be used to strengthen pure titanium parameters. The analysis confirms that explosive induced α-ω martensitic transformation and crystallographic anisotropy occurred due to the explosive pressure. The mechanical properties related to residual stresses are very nonuniform. The corrosion properties of the explosive hardened pure titanium test do not change significantly compared to nonhardened titanium. The biocompatibility of all the analyzed samples was confirmed in several tests. The morphology of bone cells does not depend on the titanium surface phase composition and crystallographic orientation. Słowa kluczowe: explosive hardening, pure titanium, bioimplants, titanium alloys Afiliacje autorów:
Gloc M. | - | Politechnika Warszawska (PL) | Przybysz S. | - | Institute of High Pressure Physics, Polish Academy of Sciences (PL) | Dulnik J. | - | IPPT PAN | Kołbuk-Konieczny D. | - | IPPT PAN | Wachowski M. | - | inna afiliacja | Kosturek R. | - | inna afiliacja | Ślęzak T. | - | inna afiliacja | Krawczyńska A. | - | Politechnika Warszawska (PL) | Ciupiński | - | Politechnika Warszawska (PL) |
| | 140p. |
4. |
Altangerel A., Moazzami Goudarzi Z., Cegielska O., Gradys A.D., Kołbuk-Konieczny D., Kalaska B.♦, Ruszczyńska A.♦, Sajkiewicz P.Ł., A facile one-stone-two-birds strategy for fabricating multifunctional 3D nanofibrous scaffolds,
Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/D3BM00837A, Vol.11, No.16, pp.5502-5516, 2023Streszczenie: Local bacterial infections lead to delayed wound healing and in extreme cases, such as diabetic foot ulcers, to non-healing due to the impaired cellular function in such wounds. Thus, many scientists have focused on developing advanced therapeutic platforms to treat infections and promote cellular proliferation and angiogenesis. This study presents a facile approach for designing nanofibrous scaffolds in three dimensions (3D) with enhanced antibacterial activity to meet the need of treating chronic diabetic wounds. Being a cationic surfactant as well as an antimicrobial agent, octenidine (OCT) makes a 2D membrane hydrophilic, enabling it to be modified into a 3D scaffold in a “one stone, two birds” manner. Aqueous sodium borohydride (NaBH4) solution plays a dual role in the fabrication process, functioning as both a reducing agent for the in situ synthesis of silver nanoparticles (Ag NPs) anchored on the nanofiber surface and a hydrogen gas producer for expanding the 2D membranes into fully formed 3D nanofiber scaffolds, as demonstrated by morphological analyses. Various techniques were used to characterize the developed scaffold (e.g., SEM, XRD, DSC, FTIR, and surface wettability), demonstrating a multilayered porous structure and superhydrophilic properties besides showing sustained and prolonged release of OCT (61% ± 1.97 in 144 h). Thanks to the synergistic effect of OCT and Ag NPs, the antibacterial performance of the 3D scaffold was significantly higher than that of the 2D membrane. Moreover, cell viability was studied in vitro on mouse fibroblasts L929, and the noncytotoxic character of the 3D scaffold was confirmed. Overall, it is shown that the obtained multifunctional 3D scaffold is an excellent candidate for diabetic wound healing and skin repair. Afiliacje autorów:
Altangerel A. | - | IPPT PAN | Moazzami Goudarzi Z. | - | IPPT PAN | Cegielska O. | - | IPPT PAN | Gradys A.D. | - | IPPT PAN | Kołbuk-Konieczny D. | - | IPPT PAN | Kalaska B. | - | inna afiliacja | Ruszczyńska A. | - | inna afiliacja | Sajkiewicz P.Ł. | - | IPPT PAN |
| | 140p. |
5. |
Silva M.J.♦, Dias Y.J.♦, Zaszczyńska A., Kołbuk-Konieczny D., Kowalczyk T., Sajkiewicz P. Ł., Yarin A.♦, Three-phase bio-nanocomposite natural-rubber-based microfibers reinforced with cellulose nanowhiskers and 45S5 bioglass obtained by solution blow spinning,
JOURNAL OF APPLIED POLYMER SCIENCE, ISSN: 0021-8995, DOI: 10.1002/app.54661, Vol.140, No.45, pp.e54661-1-18, 2023Streszczenie: Aiming at biomedical applications, the present work developed a new bio-nanocomposite fibrous mat based on natural rubber (NR) reinforced with 45S5 bioglass particles (BG) and cellulose nanowhiskers (CNW), which reveals excellent mechanical properties, good biocompatibility and bioactivity properties. Analyses of the specimens were conducted by means of morphological observa-tions (SEM) and thermal analysis (TG/DTG), as well as mechanical tests used to verify the effect of the incorporation of BG particles and CNW on the ultimate properties of these flexible NR-CWN/BG fibrous membranes. An SEM analysis revealed that all filaments possessed a ribbon-like morphology, with increasing diameters as the BG concentration increased. This likely results from an increased viscosity of the solution used for fiber blowing. In comparison with neat NR fibrous mats, the ultimate mechanical properties of bio-nanocomposites were sig-nificantly improved due to the presence of CNW and BG particles dispersed in the NR matrix. According to the TG/DTG analysis, the specimens' thermal stability was unaffected by the high BG content, and the thermal profiles were similar, with isoprene chains decomposition of the NR occurring between 350 and 450°C. In-vitro analysis on fibroblasts confirmed that the bio-nanocomposite fibrous mats are noncytotoxic. It was found that fibrous mats enhanced cellular growth and hold great promise for tissue engineering applications. Słowa kluczowe: bioactive particles,cellulose nanowhiskers,fibrous mat bio-nanocomposite,natural rubber Afiliacje autorów:
Silva M.J. | - | inna afiliacja | Dias Y.J. | - | inna afiliacja | Zaszczyńska A. | - | IPPT PAN | Kołbuk-Konieczny D. | - | IPPT PAN | Kowalczyk T. | - | IPPT PAN | Sajkiewicz P. Ł. | - | IPPT PAN | Yarin A. | - | Technion - Israel Institute of Technology (IL) |
| | 100p. |
6. |
Kołakowska A.♦, Kołbuk-Konieczny D., Chwojnowski A.♦, Rafalski A.♦, Gadomska-Gajadhur A.♦, Chitosan-Based High-Intensity Modification of the Biodegradable Substitutes for Cancellous Bone,
Journal of Functional Biomaterials, ISSN: 2079-4983, DOI: 10.3390/jfb14080410, Vol.14, No.8, pp.410-1-15, 2023Streszczenie: An innovative approach to treating bone defects is using synthetic bone substitutes made of biomaterials. The proposed method to obtain polylactide scaffolds using the phase inversion technique with a freeze extraction variant enables the production of substitutes with morphology similar to cancellous bone (pore size 100–400 µm, open porosity 94%). The high absorbability of the implants will enable their use as platelet-rich plasma (PRP) carriers in future medical devices. Surface modification by dipping enabled the deposition of the hydrophilic chitosan (CS) layer, maintaining good bone tissue properties and high absorbability (850% dry weight). Introducing CS increases surface roughness and causes local changes in surface free energy, promoting bone cell adhesion. Through this research, we have developed a new and original method of low-temperature modification of PLA substitutes with chitosan. This method uses non-toxic reagents that do not cause changes in the structure of the PLA matrix. The obtained bone substitutes are characterised by exceptionally high hydrophilicity and morphology similar to spongy bone. In vitro studies were performed to analyse the effect of morphology and chitosan on cellular viability. Substitutes with properties similar to those of cancellous bone and which promote bone cell growth were obtained. Słowa kluczowe: chitosan, polylactide, bone substitute, tissue regeneration Afiliacje autorów:
Kołakowska A. | - | inna afiliacja | Kołbuk-Konieczny D. | - | IPPT PAN | Chwojnowski A. | - | Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL) | Rafalski A. | - | inna afiliacja | Gadomska-Gajadhur A. | - | Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL) |
| | 100p. |
7. |
Niemczyk-Soczyńska B., Kołbuk-Konieczny D., Mikułowski G., Ciechomska I.A.♦, Sajkiewicz P.Ł., Methylcellulose/agarose hydrogel loaded with short electrospun PLLA/laminin fibers as an injectable scaffold for tissue engineering/3D cell culture model for tumour therapies,
RSC Advances, ISSN: 2046-2069, DOI: 10.1039/D3RA00851G, Vol.13, No.18, pp.11889-11902, 2023Streszczenie: This research aimed at designing and fabricating a smart thermosensitive injectable methylcellulose/agarose hydrogel system loaded with short electrospun bioactive PLLA/laminin fibers as a scaffold for tissue engineering applications or 3D cell culture models. Considering ECM-mimicking morphology and chemical composition, such a scaffold is capable of ensuring a hospitable environment for cell adhesion, proliferation, and differentiation. Its viscoelastic properties are beneficial from the practical perspective of minimally invasive materials that are introduced to the body via injection. Viscosity studies showed the shear-thinning character of MC/AGR hydrogels enabling the potential injection ability of highly viscous materials. Injectability tests showed that by tuning the injection rate, even a high amount of short fibers loaded inside of hydrogel could be efficiently injected into the tissue. Biological studies showed the non-toxic character of composite material with excellent viability, attachment, spreading, and proliferation of fibroblasts and glioma cells. These findings indicate that MC/AGR hydrogel loaded with short PLLA/laminin fibers is a promising biomaterial for both tissue engineering applications and 3D tumor culture models. Afiliacje autorów:
Niemczyk-Soczyńska B. | - | IPPT PAN | Kołbuk-Konieczny D. | - | IPPT PAN | Mikułowski G. | - | IPPT PAN | Ciechomska I.A. | - | Nencki Institute of Experimental Biology, Polish Academy of Sciences (PL) | Sajkiewicz P.Ł. | - | IPPT PAN |
| | 100p. |
8. |
Urbanek-Świderska O., Moczulska-Heljak M., Wróbel M.♦, Mioduszewski A.♦, Kołbuk-Konieczny D., Advanced Graft Development Approaches for ACL Reconstruction or Regeneration,
Biomedicines, ISSN: 2227-9059, DOI: 10.3390/biomedicines11020507, Vol.11, No.2, pp.507-1-26, 2023Streszczenie: The Anterior Cruciate Ligament (ACL) is one of the major knee ligaments, one which is greatly exposed to injuries. According to the British National Health Society, ACL tears represent around 40% of all knee injuries. The number of ACL injuries has increased rapidly over the past ten years, especially in people from 26–30 years of age. We present a brief background in currently used ACL treatment strategies with a description of surgical reconstruction techniques. According to the well-established method, the PubMed database was then analyzed to scaffold preparation methods and materials. The number of publications and clinical trials over the last almost 30 years were analyzed to determine trends in ACL graft development. Finally, we described selected ACL scaffold development publications of engineering, medical, and business interest. The systematic PubMed database analysis indicated a high interest in collagen for the purpose of ACL graft development, an increased interest in hybrid grafts, a numerical balance in the development of biodegradable and nonbiodegradable grafts, and a low number of clinical trials. The investigation of selected publications indicated that only a few suggest a real possibility of creating healthy tissue. At the same time, many of them focus on specific details and fundamental science. Grafts exhibit a wide range of mechanical properties, mostly because of polymer types and graft morphology. Moreover, most of the research ends at the in vitro stage, using non-certificated polymers, thus requiring a long time before the medical device can be placed on the market. In addition to scientific concerns, official regulations limit the immediate introduction of artificial grafts onto the market. Słowa kluczowe: ligament,biomaterial,tissue engineering,regeneration,implant,scaffold,synthetic polymer,natural polymer Afiliacje autorów:
Urbanek-Świderska O. | - | IPPT PAN | Moczulska-Heljak M. | - | IPPT PAN | Wróbel M. | - | Fraunhofer Institute for Cell Therapy and Immunology IZI (DE) | Mioduszewski A. | - | inna afiliacja | Kołbuk-Konieczny D. | - | IPPT PAN |
| | 100p. |
9. |
Silva M.J.♦, Dias Y.J.♦, Zaszczyńska A., Rojas Robles J.♦, Abiade J.♦, Kowalczyk T., Kołbuk-Konieczny D., Sajkiewicz P., Yarin A.L.♦, Biocomposite-based fibrous scaffolds of natural rubber/polyhydroxybutyrate blend reinforced with 45S5 bioglass aiming at biomedical applications,
Polymer Composites, ISSN: 0272-8397, DOI: 10.1002/pc.27839, pp.1-21, 2023Streszczenie: The solution blow spinning technique was used to fabricate a new biocomposite fibrous mat consisting of natural rubber (NR) and polyhydroxybutyrate (PHB) bioblend, with various loads of 45S5 bioglass (BG) particles. According to SEM analysis, NR fibers exhibited ribbon-like morphologies, whereas the addition of PHB resulted in improved fiber formation and a reduction in their diameter. In NR-PHB/BG biocomposites with varying BG loadings, typical thermal degradation events of PHB (stage i) and NR (stage ii) were observed. In comparison with pure PHB, the TG/DTG curves of NR-PHB/BG specimens revealed a lower stage i degradation peak. Such an outcome is possibly due to the fact that PHB in the NR-PHB fibers is located predominantly at the surface, that is, PHB is more susceptible to thermal degradation. The NR-PHB/BG biocomposite possessed an increased stiffness due to the addition of PHB and BG, resulting in an increased stress and a decreased strain at rupture compared to the pure NR and NR-PHB mats. DMA analysis revealed two well-defined regions, above and below the glass transition temperature (Tg), for the storage modulus (E') of the NR-PHB/BG specimens. The values of E' were in both regions for NR-PHB/BG specimens increased at higher BG content. The measured tanδ = E″/E' was used to determine the Tg value for all specimens, with Tg found to be in the −49 to −46°C range. Finally, NR-PHB/BG biocomposite fibrous were proven noncytotoxic by in-vitro testing on fibroblasts. These biocomposites enhanced cell growth, holding great promise for tissue engineering applications. Słowa kluczowe: 45S5 bioglass, biocomposite fibrous mat, biomedical applications, natural rubber, polyhydroxybutyrate, solution blow spinning Afiliacje autorów:
Silva M.J. | - | inna afiliacja | Dias Y.J. | - | inna afiliacja | Zaszczyńska A. | - | IPPT PAN | Rojas Robles J. | - | inna afiliacja | Abiade J. | - | inna afiliacja | Kowalczyk T. | - | IPPT PAN | Kołbuk-Konieczny D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Yarin A.L. | - | Technion - Israel Institute of Technology (IL) |
| | 70p. |
10. |
Tabakoğlu S., Kołbuk-Konieczny D., Sajkiewicz P., Multifluid electrospinning for multi-drug delivery systems: pros and cons, challenges, and future directions,
Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/D2BM01513G, pp.1-25, 2022Streszczenie: The electrospinning method has been widely used to produce nano/micro fibers for various applications. As a drug delivery system, electrospun fibers display many advantages such as controlled drug delivery kinetics and the ability to deliver drugs locally. A drug delivery system improves delivery efficiency and reduces possible toxic effects. In particular, multiaxial fibers consisting of two or more fluid components have drawn attention for the simultaneous administration of multiple therapeutic agents for sustained delivery and effective treatment. This review discusses recently studied multi-compartment electrospun fibers, including side-by-side (Janus) and axially symmetric fibers – coaxial and triaxial – from the perspective of multi-drug incorporation. It begins with an overview of conventional uniaxial single-fluid electrospinning methods for drug delivery applications, then highlights the advantages of multi-compartment fibers for multi-substance loading/delivery and the advances in triaxial fibers that seem to be promising from the perspective of challenges for dressings and tissue regeneration. Furthermore, drug release mechanisms and kinetics are discussed in the controlled delivery of multiple therapeutics in fibers. In the conclusion, current biomedical applications of multi-drug delivery systems in selected applications and future perspectives are presented. Afiliacje autorów:
Tabakoğlu S. | - | IPPT PAN | Kołbuk-Konieczny D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
| | 140p. |
11. |
Czwartos J.♦, Zaszczyńska A., Nowak-Stępniowska A.♦, Fok T.♦, Budner B.♦, Bartnik A.♦, Wachulak P.♦, Kołbuk D., Sajkiewicz P., Fiedorowicz H.♦, The novel approach to physico-chemical modification and cytocompatibility enhancement of fibrous polycaprolactone (PCL) scaffolds using soft X-ray/extreme ultraviolet (SXR/EUV) radiation and low-temperature, SXR/EUV induced, nitrogen and oxygen plasmas,
APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2022.154779, Vol.606, pp.154779-1-12, 2022Streszczenie: The fundamental aspect of the fabrication of microporous, fibrous biomaterials in form of scaffolds is the optimization of their surface properties to enhance cellular response. In this work, a novel approach to physico-chemical modification and bioactivity enhancement of electrospun fibrous polycaprolactone (PCL) nonwovens using soft X-ray/extreme ultraviolet (SXR/EUV) irradiation and exposure to a low-temperature, SXR/EUV induced, nitrogen and oxygen plasmas is presented for the first time. Chemical alterations and morphology of the fibrous structure of irradiated PCL mats were examined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The impact of introduced changes on viability, morphology, and adhesion of L929 mouse fibroblasts was examined. It was found that simultaneous interaction of SXR/EUV radiation and N2 or O2 photoionized plasmas led to strong chemical decomposition of the surface of fibrous PCL mats. Also, mats’ spatial porous structure was not damaged and the fibers were not broken or fused. All modified samples demonstrated cyto-compatible and non-cytotoxic properties. Enhancement of L929 cell adhesion and increased proliferation were also observed. Słowa kluczowe: Soft X-ray/extreme ultraviolet (SXR/EUV) radiation, Low-temperature plasma treatment, Electrospun polycaprolactone (PCL) nonwovens, XPS analysis, L929 mouse fibroblasts, Cytocompatibility enhancement Afiliacje autorów:
Czwartos J. | - | inna afiliacja | Zaszczyńska A. | - | IPPT PAN | Nowak-Stępniowska A. | - | inna afiliacja | Fok T. | - | inna afiliacja | Budner B. | - | inna afiliacja | Bartnik A. | - | inna afiliacja | Wachulak P. | - | inna afiliacja | Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Fiedorowicz H. | - | inna afiliacja |
| | 140p. |
12. |
Jeznach O., Kołbuk D., Reich T.♦, Sajkiewicz P., Immobilization of Gelatin on Fibers for Tissue Engineering Applications: A Comparative Study of Three Aliphatic Polyesters,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym14194154, Vol.14, No.19, pp.4154-1-21, 2022Streszczenie: Immobilization of cell adhesive proteins on the scaffold surface has become a widely reported method that can improve the interaction between scaffold and cells. In this study, three nanofibrous scaffolds obtained by electrospinning of poly(caprolactone) (PCL), poly(L-lactide-co-caprolactone) (PLCL) 70:30, or poly(L-lactide) (PLLA) were subjected to chemical immobilization of gelatin based on aminolysis and glutaraldehyde cross-linking, as well as physisorption of gelatin. Two sets of aminolysis conditions were applied to evaluate the impact of amine group content. Based on the results of the colorimetric bicinchoninic acid (BCA) assay, it was shown that the concentration of gelatin on the surface is higher for the chemical modification and increases with the concentration of free NH2 groups. XPS (X-ray photoelectron spectroscopy) analysis confirmed this outcome. On the basis of XPS results, the thickness of the gelatin layer was estimated to be less than 10 nm. Initially, hydrophobic scaffolds are completely wettable after coating with gelatin, and the time of waterdrop absorption was correlated with the surface concentration of gelatin. In the case of all physically and mildly chemically modified samples, the decrease in stress and strain at break was relatively low, contrary to strongly aminolyzed PLCL and PLLA samples. Incubation testing performed on the PCL samples showed that a chemically immobilized gelatin layer is more stable than a physisorbed one; however, even after 90 days, more than 60% of the initial gelatin concentration was still present on the surface of physically modified samples. Mouse fibroblast L929 cell culture on modified samples indicates a positive effect of both physical and chemical modification on cell morphology. In the case of PCL and PLCL, the best morphology, characterized by stretched filopodia, was observed after stronger chemical modification, while for PLLA, there was no significant difference between modified samples. Results of metabolic activity indicate the better effect of chemical immobilization than of physisorption of gelatin. Słowa kluczowe: gelatin, aminolysis, surface modification, electrospinning Afiliacje autorów:
Jeznach O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Reich T. | - | inna afiliacja | Sajkiewicz P. | - | IPPT PAN |
| | 100p. |
13. |
Niemczyk-Soczyńska B., Gradys A., Kołbuk D., Krzton-Maziopa A.♦, Rogujski P.♦, Stanaszek L.♦, Lukomska B.♦, Sajkiewicz P., A methylcellulose/agarose hydrogel as an innovative scaffold for tissue engineering,
RSC Advances, ISSN: 2046-2069, DOI: 10.1039/D2RA04841H, Vol.12, No.41, pp.26882-26894, 2022Streszczenie: In situ crosslinked materials are the main interests of both scientific and industrial research. Methylcellulose (MC) aqueous solution is one of the representatives that belongs to this family of thermosensitive materials. At room temperature, MC is a liquid whereupon during temperature increase up to 37 °C, it crosslinks physically and turns into a hydrogel. This feature makes it unique, especially for tissue engineering applications. However, the crosslinking rate of MC alone is relatively slow considering tissue engineering expectations. According to these expectations, the crosslinking should take place slowly enough to allow for complete injection and fill the injury avoiding clogging in the needle, and simultanously, it should be sufficiently fast to prevent it from relocation from the lesion. One of the methods to overcome this problem is MC blending with another substance that increases the crosslinking rate of MC. In these studies, we used agarose (AGR). These studies aim to investigate the effect of different AGR amounts on MC crosslinking kinetics, and thermal, viscoelastic, and biological properties. Differential Scanning Calorimetry (DSC) and dynamic mechanical analysis (DMA) measurements proved that AGR addition accelerates the beginning of MC crosslinking. This phenomenon resulted from AGR's greater affinity to water, which is crucial in this particular crosslinking part. In vitro tests, carried out using the L929 fibroblast line and mesenchymal stem cells (MSCs), confirmed that most of the hydrogel samples were non-cytotoxic in contact with extracts and directly with cells. Not only does this type of thermosensitive hydrogel system provide excellent mechanical and biological cues but also its stimuli-responsive character provides more novel functionalities for designing innovative scaffold/cell delivery systems for tissue engineering applications. Afiliacje autorów:
Niemczyk-Soczyńska B. | - | IPPT PAN | Gradys A. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Krzton-Maziopa A. | - | Politechnika Warszawska (PL) | Rogujski P. | - | inna afiliacja | Stanaszek L. | - | inna afiliacja | Lukomska B. | - | inna afiliacja | Sajkiewicz P. | - | IPPT PAN |
| | 100p. |
14. |
Jeznach O., Kołbuk D., Marzec M.♦, Bernasik A.♦, Sajkiewicz P., Aminolysis as a surface functionalization method of aliphatic polyester nonwovens: impact on material properties and biological response,
RSC Advances, ISSN: 2046-2069, DOI: 10.1039/D2RA00542E, Vol.12, No.18, pp.11303-11317, 2022Streszczenie: It is reported in the literature that introducing amino groups on the surface improves cellular behaviour due to enhanced wettability and the presence of the positive charge. In this work, electrospun fibers were subjected to aminolysis under various conditions to investigate the impact of reaction parameters on the concentration of free NH2 groups, change of fiber properties, and the response of L929 cells. Three types of electrospun nonwovens obtained from poly(caprolactone) (PCL), poly(L-lactide-co-caprolactone) (PLCL) 70 : 30 and poly(L-lactide) (PLLA) were investigated. For all polymers, the concentration of NH2 groups increased with the diamine concentration and time of reaction. However, it was observed that PCL fibers require much stronger conditions than PLCL and PLLA fibers to reach the same level of introduced amine groups. X-ray photoelectron spectroscopy results clearly demonstrate that an aminolysis reaction is not limited to the surface of the material. Gel permeation chromatography results support this conclusion indicating global molecular weight reduction. However, it is possible to reach a compromise between the concentration of introduced amine groups and the change of mechanical properties. For most of the investigated conditions, aminolysis did not significantly change the water contact angle. Despite this, the change of L929 and MG63 cell shape to being more spread confirmed the positive effect of the presence of the amine groups. Afiliacje autorów:
Jeznach O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Marzec M. | - | inna afiliacja | Bernasik A. | - | inna afiliacja | Sajkiewicz P. | - | IPPT PAN |
| | 100p. |
15. |
Kołbuk D., Ciechomska M.♦, Jeznach O., Sajkiewicz P., Effect of crystallinity and related surface properties on gene expression of primary fibroblasts,
RSC Advances, ISSN: 2046-2069, DOI: 10.1039/D1RA07237D, Vol.12, No.7, pp.4016-4028, 2022Streszczenie: The biomaterial-cells interface is one of the most fundamental issues in tissue regeneration. Despite many years of scientific work, there is no clear answer to what determines the desired adhesion of cells and the synthesis of ECM proteins. Crystallinity is a characteristic of the structure that influences the surface and bulk properties of semicrystalline polymers used in medicine. The crystallinity of polycaprolactone (PCL) was varied by changing the molecular weight of the polymer and the annealing procedure. Measurements of surface free energy showed differences related to substrate crystallinity. Additionally, the water contact angle was determined to characterise surface wettability which was crucial in the analysis of protein absorption. X-ray photoelectron spectroscopy was used to indicate oxygen bonds amount on the surface. Finally, the impact of the crystallinity, and related properties were demonstrated on dermal fibroblasts' response. Cellular proliferation and expression of selected genes: α-SMA, collagen I, TIMP, integrin were analysed. Afiliacje autorów:
Kołbuk D. | - | IPPT PAN | Ciechomska M. | - | National Institute of Geriatrics, Rheumatology and Rehabilitation (PL) | Jeznach O. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
| | 100p. |
16. |
Dias Y.J.♦, Robles J.R.♦, Sinha-Ray S.♦, Abiade J.♦, Pourdeyhimi B.♦, Niemczyk-Soczyńska B., Kołbuk D., Sajkiewicz P., Yarin A.L.♦, Solution-blown poly(hydroxybutyrate) and ε-poly-l-lysine submicro- and microfiber-based sustainable nonwovens with antimicrobial activity for single-use applications,
ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.1c00594, Vol.7, No.8, pp.3980-3992, 2021Streszczenie: Antimicrobial nonwovens for single use applications (e.g., diapers, sanitary napkins, medical gauze, etc.) are of utmost importance as the first line of defense against bacterial infections. However, the utilization of petrochemical nondegradable polymers in such nonwovens creates sustainability-related issues. Here, sustainable poly(hydroxybutyrate) (PHB) and ε-poly-l-lysine (ε-PLL) submicro- and microfiber-based antimicrobial nonwovens produced by a novel industrially scalable process, solution blowing, have been proposed. In such nonwovens, ε-PLL acts as an active material. In particular, it was found that most of ε-PLL is released within the first hour of deployment, as is desirable for the applications of interest. The submicro- and microfiber mat was tested against C. albicans and E. coli, and it was found that ε-PLL-releasing microfibers result in a significant reduction of bacterial colonies. It was also found that ε-PLL-releasing antimicrobial submicro- and microfiber nonwovens are safe for human cells in fibroblast culture. Mechanical characterization of these nonwovens revealed that, even though they are felt as soft and malleable, they possess sufficient strength, which is desirable in the end-user applications. Słowa kluczowe: PHB submicro- and microfibers, antimicrobial nonwovens, ε-PLL release, E. coli, C. albicans Afiliacje autorów:
Dias Y.J. | - | inna afiliacja | Robles J.R. | - | inna afiliacja | Sinha-Ray S. | - | inna afiliacja | Abiade J. | - | inna afiliacja | Pourdeyhimi B. | - | inna afiliacja | Niemczyk-Soczyńska B. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Yarin A.L. | - | Technion - Israel Institute of Technology (IL) |
| | 140p. |
17. |
Bil M.♦, Mrówka P.♦, Kołbuk D., Święszkowski W.♦, Multifunctional composite combining chitosan microspheres for drug delivery embedded in shape memory polyester-urethane matrix,
Composites Science and Technology, ISSN: 0266-3538, DOI: 10.1016/j.compscitech.2020.108481, Vol.201, pp.108481-1-9, 2021Streszczenie: Multifunctional composite biomaterials (3b-PU/CH_M) consisting of chitosan microspheres (CH-M) that provide drug release functionality and crosslinked polyester-urethane (3b-PU) matrix responsible for shape memory properties were designed. A series of 3b-PU/CH_M bio-composites with varying weight fraction of CH-M (2.5, 5, and 10 wt %) embedded into 3b-PU matrix were synthesized. The ATR-FTIR confirmed the presence of covalent bonds between 3b-PU matrix and CH-M as well as enhanced hydrogen bonds interaction within bio-composites matrix in comparison to neat 3b-PU. It was found that CH-M had not impaired the shape memory properties of 3b-PU matrix and even slightly improved the shape recovery (Rr %). The Rr value increased to 100% for 3b-PU/CH 2.5% M and 3b-PU/CH 5% M after the third thermo-mechanical cycle. Moreover, the transition temperature (Ttrans) of shape recovery tailored to 30 °C by the chemical composition of the 3b-PU network was not affected by CH-M. Effectiveness of the application of the composites as a controlled drug delivery system at various pH conditions was confirmed in an in vitro release study of ciprofloxacin hydrochloride (Cpx-HCl) used as a model drug. In vitro biocompatibility studies revealed that the materials do not alter the cells' ability to proliferate and differentiate. Słowa kluczowe: multifunctional composites, smart materials, shape memory behavior, multifunctional properties, drug release Afiliacje autorów:
Bil M. | - | Politechnika Warszawska (PL) | Mrówka P. | - | inna afiliacja | Kołbuk D. | - | IPPT PAN | Święszkowski W. | - | inna afiliacja |
| | 140p. |
18. |
Niemczyk-Soczyńska B., Dulnik J., Jeznach O., Kołbuk D., Sajkiewicz P., Shortening of electrospun PLLA fibers by ultrasonication,
Micron, ISSN: 0968-4328, DOI: 10.1016/j.micron.2021.103066, Vol.145, pp.103066-1-8, 2021Streszczenie: This research work is aimed at studying the effect of ultrasounds on the effectiveness of fiber fragmentation by taking into account the type of sonication medium, processing time, and various PLLA molecular weights. Fragmentation was followed by an appropriate filtration in order to decrease fibers length distribution. It was evidenced by fiber length determination using SEM that the fibers are shortened after ultrasonic treatment, and the effectiveness of shortening depends on the two out of three investigated parameters, mostly on the sonication medium, and processing time. The gel permeation chromatography (GPC) confirmed that such ultrasonic treatment does not change the polymers' molecular weight. Our results allowed to optimize the ultrasonic fragmentation procedure of electrospun fibers while preliminary viscosity measurements of fibers loaded into hydrogel confirmed their potential in further use as fillers for injectable hydrogels for regenerative medicine applications. Słowa kluczowe: electrospinning, ultrasonication, short fibers, polymers Afiliacje autorów:
Niemczyk-Soczyńska B. | - | IPPT PAN | Dulnik J. | - | IPPT PAN | Jeznach O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
| | 100p. |
19. |
Budnicka M.♦, Kołbuk D., Ruśkowski P.♦, Gadomska‐Gajadhur A.♦, Poly‐L ‐lactide scaffolds with super pores obtained by freeze‐extraction method,
Journal of Biomedical Materials Research Part B: Applied Biomaterials, ISSN: 1552-4973, DOI: 10.1002/jbm.b.34642, Vol.108, No.8, pp.3162-3173, 2020Streszczenie: A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration. Słowa kluczowe: cellular studies, Eudragit® E100, freeze-extraction, poly-L-lactide Afiliacje autorów:
Budnicka M. | - | inna afiliacja | Kołbuk D. | - | IPPT PAN | Ruśkowski P. | - | Politechnika Warszawska (PL) | Gadomska‐Gajadhur A. | - | Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL) |
| | 140p. |
20. |
Górecka Ż.♦, Idaszek J.♦, Kołbuk D., Choińska E.♦, Chlanda A.♦, Święszkowski W.♦, The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3D-printed PCL,
Materials Science and Engineering C, ISSN: 0928-4931, DOI: 10.1016/j.msec.2020.111072, Vol.114, pp.111072-1-11, 2020Streszczenie: Fused Deposition Modelling (FDM) technique has been widely utilized in fabrication of 3D porous scaffolds for tissue engineering (TE) applications. Surprisingly, although there are many publications devoted to the architectural features of the 3D scaffolds fabricated by the FDM, none of them give us evident information about the impact of the diameter of the fibres on material properties. Therefore, the aim of this study was to investigate, for the first time, the effect of the diameter of 3D-printed PCL fibres on variations in their microstructure and resulting mechanical behaviour. The fibres made of poly(ε-caprolactone) (PCL) were extruded through commonly used types of nozzles (inner diameter ranging from 0.18 mm to 1.07 mm) by means of FDM technique. Static tensile test and atomic force microscopy working in force spectroscopy mode revealed strong decrease in the Young's modulus and yield strength with increasing fibre diameter in the investigated range. To explain this phenomenon, we conducted differential scanning calorimetry, wide-angle X-ray-scattering, Fourier-transform infrared spectroscopy, infrared and polarized light microscopy imaging. The obtained results clearly showed that the most prominent effect on the obtained microstructures and mechanical properties had different cooling and shear rates during fabrication process causing changes in supramolecular interactions of PCL. The observed fibre size-dependent formation of hydrogen bonds affected the crystalline structure and its stability. Summarising, this study clearly demonstrates that the diameter of 3D-printed fibres has a strong effect on obtained microstructure and mechanical properties, therefore should be taken into consideration during design of the 3D TE scaffolds. Słowa kluczowe: fused deposition modelling, polycaprolactone, mechanical properties, hydrogen bonds, microstructure Afiliacje autorów:
Górecka Ż. | - | Politechnika Warszawska (PL) | Idaszek J. | - | inna afiliacja | Kołbuk D. | - | IPPT PAN | Choińska E. | - | Politechnika Warszawska (PL) | Chlanda A. | - | Politechnika Warszawska (PL) | Święszkowski W. | - | inna afiliacja |
| | 140p. |
21. |
Budnicka M.♦, Szymaniak M.♦, Kołbuk D., Ruśkowski P.♦, Gadomska-Gajadhur A.♦, Biomineralization of poly-l-lactide spongy bone scaffolds obtained by freeze-extraction method,
Journal of Biomedical Materials Research Part B: Applied Biomaterials, ISSN: 1552-4973, DOI: 10.1002/jbm.b.34441, Vol.108, No.3, pp.868-879, 2020Streszczenie: Implants in the form of polymer scaffolds are commonly used to regenerate bone tissue after traumas or tooth extractions. However, few implant formation methods enable building polymer scaffolds allowing to reconstruct larger bone losses without immune response. Spacious, porous poly-l-lactide implants with considerable volume were obtained using the phase inversion method with the freeze-extraction variant. The calcium phosphate (CaP) coating was deposited on implant surfaces with the biomimetic method to improve the implant's osteoconductivity. The substitues morphology was characterized-porosity, size and shape of pores; mechanical properties, mass absorbability of implants before and after mineralization. The characteristics were provided with scanning electron microscopy (SEM), static compression test and hydrostatic weighing, respectively. The presence of CaPs in the entire volume of the implant was confirmed with SEM and infrared spectroscopy with Fourier transform (FTIR). The biocompatibility of scaffolds was confirmed with in vitro quantitative test and microscopic observations. The obtained results show that the implants can be used in tissue engineering as a vehicle of platelet-rich plasma to regenerate critical spongy bone losses. Słowa kluczowe: bone graft, calcium phosphate(s), cell culture Afiliacje autorów:
Budnicka M. | - | inna afiliacja | Szymaniak M. | - | inna afiliacja | Kołbuk D. | - | IPPT PAN | Ruśkowski P. | - | Politechnika Warszawska (PL) | Gadomska-Gajadhur A. | - | Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL) |
| | 140p. |
22. |
Kołbuk D., Jeznach O., Wrzecionek M.♦, Gadomska-Gajadhur A.♦, Poly(glycerol succinate) as an eco-friendly component of PLLA and PLCL fibres towards medical applications,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym12081731, Vol.12, No.8, pp.1731-1-17, 2020Streszczenie: This study was conducted as a first step in obtaining eco-friendly fibres for medical applications using a synthesised oligomer poly(glycerol succinate) (PGSu) as an additive for synthetic poly(L-lactic acid) (PLLA) and poly (L-lactide-co-caprolactone) (PLCL). The effects of the oligomer on the structure formation, morphology, crystallisation behaviour, and mechanical properties of electrospun bicomponent fibres were investigated. Nonwovens were investigated by means of scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and mechanical testing. The molecular structure of PLLA fibres is influenced by the presence of PGSu mainly acting as an enhancer of molecular orientation. In the case of semicrystalline PLCL, chain mobility was enhanced by the presence of PGSu molecules, and the crystallinity of bicomponent fibres increased in relation to that of pure PLCL. The mechanical properties of bicomponent fibres were influenced by the level of PGSu present and the extent of crystal formation of the main component. An in vitro study conducted using L929 cells confirmed the biocompatible character of all bicomponent fibres. Słowa kluczowe: poly(glycerol succinate), plasticiser, eco-friendly polymer, electrospinning, hyperbranched polyester Afiliacje autorów:
Kołbuk D. | - | IPPT PAN | Jeznach O. | - | IPPT PAN | Wrzecionek M. | - | Politechnika Warszawska (PL) | Gadomska-Gajadhur A. | - | Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL) |
| | 100p. |
23. |
Zaszczyńska A., Sajkiewicz P.Ł., Gradys A., Tymkiewicz R., Urbanek O., Kołbuk D., Influence of process-material conditions on the structure and biological properties of electrospun polyvinylidene fluoride fibers,
BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/bpasts.2020.133368, Vol.68, No.3, pp.627-633, 2020Streszczenie: Polyvinylidene fluoride (PVDF) is one of the most important piezoelectric polymers. Piezoelectricity in PVDF appears in polar β and ɣ phases. Piezoelectric fibers obtained by means of electrospinning may be used in tissue engineering (TE) as a smart analogue of the natural extracellular matrix (ECM). We present results showing the effect of rotational speed of the collecting drum on morphology, phase content and in vitro biological properties of PVDF nonwovens. Morphology and phase composition were analyzed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), respectively. It was shown that increasing rotational speed of the collector leads to an increase in fiber orientation, reduction in fiber diameter and considerable increase of polar phase content, both b and g. In vitro cell culture experiments, carried out with the use of ultrasounds in order to generate electrical potential via piezoelectricity, indicate a positive effect of polar phases on fibroblasts. Our preliminary results demonstrate that piezoelectric PVDF scaffolds are promising materials for tissue engineering applications, particularly for neural tissue regeneration, where the electric potential is crucial. Słowa kluczowe: scaffolds, electrospinning, polyvinylidene fluoride, tissue engineering Afiliacje autorów:
Zaszczyńska A. | - | IPPT PAN | Sajkiewicz P.Ł. | - | IPPT PAN | Gradys A. | - | IPPT PAN | Tymkiewicz R. | - | IPPT PAN | Urbanek O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN |
| | 100p. |
24. |
Kołbuk D., Heljak M.♦, Choińska E.♦, Urbanek O., Novel 3D hybrid nanofiber scaffolds for bone regeneration,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym12030544, Vol.12, No.3, pp.544-1-18, 2020Streszczenie: Development of hybrid scaffolds and their formation methods occupies an important place in tissue engineering. In this paper, a novel method of 3D hybrid scaffold formation is presented as well as an explanation of the differences in scaffold properties, which were a consequence of different crosslinking mechanisms. Scaffolds were formed from 3D freeze-dried gelatin and electrospun poly(lactide-co-glicolide) (PLGA) fibers in a ratio of 1:1 w/w. In order to enhance osteoblast proliferation, the fibers were coated with hydroxyapatite nanoparticles (HAp) using sonochemical processing. All scaffolds were crosslinked using an EDC/NHS solution. The scaffolds' morphology was imaged using scanning electron microscopy (SEM). The chemical composition of the scaffolds was analyzed using several methods. Water absorption and mass loss investigations proved a higher crosslinking degree of the hybrid scaffolds than a pure gelatin scaffold, caused by additional interactions between gelatin, PLGA, and HAp. Additionally, mechanical properties of the 3D hybrid scaffolds were higher than traditional hydrogels. In vitro studies revealed that fibroblasts and osteoblasts proliferated and migrated well on the 3D hybrid scaffolds, and also penetrated their structure during the seven days of the experiment. Słowa kluczowe: hybrid scaffolds, electrospinning, freeze-drying, gelatin, hydroxyapatite, sonochemical covering/grafting Afiliacje autorów:
Kołbuk D. | - | IPPT PAN | Heljak M. | - | Politechnika Warszawska (PL) | Choińska E. | - | Politechnika Warszawska (PL) | Urbanek O. | - | IPPT PAN |
| | 100p. |
25. |
Auguścik-Królikowska M.♦, Ryszkowska J.♦, Szczepkowski L.♦, Kwiatkowski D., Kołbuk-Konieczny D., Szymańska J.♦, Viscoelastic polyurethane foams with the addition of mint,
POLIMERY, ISSN: 0032-2725, DOI: 10.14314/polimery.2020.3.4, Vol.65, No.3, pp.196-207, 2020Streszczenie: The article presents an assessment of the possibilities of producing viscoelastic open cell polyurethane (PUR) foams produced with a natural filler in the form of mint leaves. PUR foams containing from 10 to 30 wt % of mint were produced. Chemical structure, thermal and mechanical properties of the foams were assessed. It was found that the filler containing 7 wt % of water caused significant changes in the foam characteristics. In composite foams, the content of urea and hydrogen bonds increased with higher mint contents. The hardness and comfort factor of composite foams also increased. The introduction of a filler containing a significant amount of water caused a change in the porosity and wall thickness of composite foams resulting in a significant increase in their permanent deformations. Słowa kluczowe: open cell viscoelastic polyurethane foams, mint, cytocompatibility Afiliacje autorów:
Auguścik-Królikowska M. | - | inna afiliacja | Ryszkowska J. | - | inna afiliacja | Szczepkowski L. | - | inna afiliacja | Kwiatkowski D. | - | IPPT PAN | Kołbuk-Konieczny D. | - | IPPT PAN | Szymańska J. | - | inna afiliacja |
| | 40p. |
26. |
Niemczyk-Soczyńska B., Gradys A., Kołbuk D., Krzton-Maziopa A.♦, Sajkiewicz P., Crosslinking kinetics of methylcellulose qqueous solution and its potential as a scaffold for tissue engineering,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym11111772, Vol.11, No.11, pp.1772-1-17, 2019Streszczenie: Thermosensitive, physically crosslinked injectable hydrogels are in the area of interests of various scientific fields. One of the representatives of this materials group is an aqueous solution of methylcellulose. At ambient conditions, methylcellulose (MC) is a sol while on heating up to 37 °C, MC undergoes physical crosslinking and transforms into a gel. Injectability at room temperature, and crosslinkability during subsequent heating to physiological temperature raises hopes, especially for tissue engineering applications. This research work aimed at studying crosslinking kinetics, thermal, viscoelastic, and biological properties of MC aqueous solution in a broad range of MC concentrations. It was evidenced by Differential Scanning Calorimetry (DSC) that crosslinking of MC is a reversible two-stage process, manifested by the appearance of two endothermic effects, related to the destruction of water cages around methoxy groups, followed by crosslinking via the formation of hydrophobic interactions between methoxy groups in the polymeric chains. The DSC results also allowed the determination of MC crosslinking kinetics. Complementary measurements of MC crosslinking kinetics performed by dynamic mechanical analysis (DMA) provided information on the final storage modulus, which was important from the perspective of tissue engineering applications. Cytotoxicity tests were performed using mouse fibroblasts and showed that MC at low concentration did not cause cytotoxicity. All these efforts allowed to assess MC hydrogel relevance for tissue engineering applications. Słowa kluczowe: methylcellulose, thermosensitive hydrogel, crosslinking kinetics, DSC, DMA, cellular tests Afiliacje autorów:
Niemczyk-Soczyńska B. | - | IPPT PAN | Gradys A. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Krzton-Maziopa A. | - | Politechnika Warszawska (PL) | Sajkiewicz P. | - | IPPT PAN |
| | 100p. |
27. |
Jeznach O., Kołbuk D., Sajkiewicz P., Aminolysis of various aliphatic polyesters in a form of nanofibers and films,
Polymers, ISSN: 2073-4360, DOI: 10.3390/polym11101669, Vol.11, No.10, pp.1669-1-16, 2019Streszczenie: Surface functionalization of polymer scaffolds is a method used to improve interactions of materials with cells. A frequently used method for polyesters is aminolysis reaction, which introduces free amine groups on the surface. In this study, nanofibrous scaffolds and films of three different polyesters–polycaprolactone (PCL), poly(lactide-co-caprolactone) (PLCL), and poly(l-lactide) (PLLA) were subjected to this type of surface modification under the same conditions. Efficiency of aminolysis was evaluated on the basis of ninhydrin tests and ATR–FTIR spectroscopy. Also, impact of this treatment on the mechanical properties, crystallinity, and wettability of polyesters was compared and discussed from the perspective of aminolysis efficiency. It was shown that aminolysis is less efficient in the case of nanofibers, particularly for PCL nanofibers. Our hypothesis based on the fundamentals of classical high speed spinning process is that the lower efficiency of aminolysis in the case of nanofibers is associated with the radial distribution of crystallinity of electrospun fiber with more crystalline skin, strongly inhibiting the reaction. Moreover, the water contact angle results demonstrate that the effect of free amino groups on wettability is very different depending on the type and the form of polymer. The results of this study can help to understand fundamentals of aminolysis-based surface modification. Słowa kluczowe: aminolysis, polyester, electrospinning, nanofibers, film, surface chemical modification Afiliacje autorów:
Jeznach O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
| | 100p. |
28. |
Kołbuk D., Urbanek O., Denis P., Choińska E.♦, Sonochemical coating as an effective method of polymeric nonwovens functionalization,
Journal of Biomedical Materials Research Part A, ISSN: 1549-3296, DOI: 10.1002/jbm.a.36751, Vol.107, No.11, pp.2447-2457, 2019Streszczenie: A surface of polymeric nonwovens may be coated with various types of nanoparticles for medical applications, filtration, and so forth. However, quite often methods used for surface modification are difficult to scale up or are not applicable for polymers. In this article, we present one-step process enabling nonwovens functionalization. Poly(l-lactide-co-glicolide) (PLGA) nonwovens were prepared by electrospinning process and coated with hydroxyapatite nanoparticles (HAp) using ultrasonic processing. The effect of the process was evaluated with various techniques. HAp layer was successfully attached without loss of structural properties of HAp or PLGA nonwovens. The analysis confirmed the decrease of hydrophobicity of coated nonwoven, as well as its biocompatibility, making this material valuable from the perspective of medical applications. The sonochemical functionalization of polymeric nonwovens may be considered as an effective and economic method, enhancing surface properties of electrospun nonwovens for various applications. Słowa kluczowe: lectrospinning, fibrous composites, nanoparticles, surface modification, ultrasonic treatment Afiliacje autorów:
Kołbuk D. | - | IPPT PAN | Urbanek O. | - | IPPT PAN | Denis P. | - | IPPT PAN | Choińska E. | - | Politechnika Warszawska (PL) |
| | 100p. |
29. |
Urbanek O., Kołbuk D., Wróbel M.♦, Articular cartilage: new directions and barriers of scaffolds development – review,
International Journal of Polymeric Materials and Polymeric Biomaterials, ISSN: 0091-4037, DOI: 10.1080/00914037.2018.1452224, Vol.68, No.7, pp.396-410, 2019Streszczenie: Despite progress which has been made in recent years in the field of cell-based therapies or cell scaffolds for cartilage regeneration, a lot of work still needs to be done. Scaffolds remain a great base for tissue regeneration. However, proper implantation procedures or post-treatment still await development. In this review we summarize paths of cartilage treatment, especially focusing on cell scaffold design and manufacture. As well as the advantages and disadvantages of available or investigated methods and materials, especially focusing on cartilage scaffold design. We show the most promising directions and barriers in the creation of healthy tissue. Słowa kluczowe: cartilage regeneration, medical devices, scaffold development, tissue engineering Afiliacje autorów:
Urbanek O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Wróbel M. | - | Centre for Specialized Surgery (PL) |
| | 70p. |
30. |
Zaszczyńska A., Sajkiewicz P., Gradys A., Kołbuk D., Urbanek O., Cellular studies on piezoelectric polyvinylidene fluoride nanofibers subjected to ultrasounds stimulations,
ENGINEERING OF BIOMATERIALS / INŻYNIERIA BIOMATERIAŁÓW, ISSN: 1429-7248, Vol.22, No.153, pp.25-25, 2019 | | 20p. |
31. |
Niemczyk B., Sajkiewicz P., Kołbuk D., Injectable hydrogels as novel materials for central nervous system regeneration,
Journal of neural engineering, ISSN: 1741-2560, DOI: 10.1088/1741-2552/aacbab, Vol.15, No.5, pp.051002-1-15, 2018Streszczenie: Approach. Injuries of the central nervous system (CNS) can cause serious and permanent disability due to limited regeneration ability of the CNS. Presently available therapies are focused on lesion spreading inhibition rather than on tissue regeneration. Recent investigations in the field of neural tissue engineering indicate extremely promising properties of novel injectable and non-injectable hydrogels which are tailored to serve as biodegradable scaffolds for CNS regeneration. Objective. This review discusses the state-of-the-art and barriers in application of novel polymer-based hydrogels without and with nanoparticles for CNS regeneration. Main results. Pure hydrogels suffer from lack of similarities to natural neural tissue. Many of the biological studies indicated nano-additives in hydrogels may improve their topography, mechanical properties, electroconductivity and biological functions. The most promising biomaterials which meet the requirements of CNS tissue engineering seem to be injectable thermosensitive hydrogels loaded with specific micro-and nanoparticles. Significance. We highlight injectable hydrogels with various micro-and nanoparticles, because of novelty and attractiveness of this type of materials for CNS regeneration and future development perspectives. Słowa kluczowe: hydrogels, nanoparticles, injectable, microparticles, nanofibers, central nervous system Afiliacje autorów:
Niemczyk B. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN |
| | 35p. |
32. |
Jeznach O., Kołbuk D., Sajkiewicz P., Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration,
Journal of Biomedical Materials Research Part A, ISSN: 1549-3296, DOI: 10.1002/jbm.a.36449, Vol.106, No.10, pp.2762-2776, 2018Streszczenie: Cartilage loss due to age‐related degeneration and mechanical trauma is a significant and challenging problem in the field of surgical medicine. Unfortunately, cartilage tissue can be characterized by the lack of regenerative ability. Limitations of conventional treatment strategies, such as auto‐, allo‐ and xenografts or implants stimulate an increasing interest in the tissue engineering approach to cartilage repair. This review discusses the application of polymer‐based scaffolds, with an emphasis on hydrogels in cartilage tissue engineering. We highlight injectable hydrogels with various micro‐ and nanoparticles, as they constitute a novel and attractive type of scaffolds. We discuss advantages, limitations and future perspectives of injectable nanocomposite hydrogels for cartilage tissue regeneration. Słowa kluczowe: polymers, hydrogels, injectable hydrogels, injectable nanocomposite hydrogels, cartilage repair, cartilage tissue engineering Afiliacje autorów:
Jeznach O. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
| | 35p. |
33. |
Dulnik J., Kołbuk D., Denis P., Sajkiewicz P., The effect of a solvent on cellular response to PCL/gelatin and PCL/collagen electrospun nanofibres,
EUROPEAN POLYMER JOURNAL, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2018.05.010, Vol.104, pp.147-156, 2018Streszczenie: Bicomponent polycaprolactone/gelatin and polycaprolactone/collagen fibres were formed by electrospinning using two kinds of solvents: a representative of commonly used solvents with this polymer composition, highly toxic hexafluoroisopropanol (HFIP) and alternative, less harmful one, the mixture of acetic (AA) and formic (FA) acids. Both material types were subjected to investigations of structure and in-vitro cellular activity. Viscosity and Fourier transform infrared spectroscopy (FTIR) measurements shown that the type of solvent used influences the structure of solution and conformation of polymer molecules. In-vitro quantitative tests as well as cell culture morphology observations proved that materials electrospun with the use of 'green' solvents can yield similar results to those obtained by made with toxic ones. Slightly better cellular response to materials electrospun from HFIP can be explained by relatively well dispersed components within the fibre and more expanded conformation of molecules, resulting in better exposition of RGD (Arg-Gly-Asp) binding sites to cells' integrin receptors. Słowa kluczowe: Cellular tests, Electrospinning, Biopolymers, Viscosity, Solvents Afiliacje autorów:
Dulnik J. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Denis P. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN |
| | 35p. |
34. |
Enayati M.S.♦, Behzad T.♦, Sajkiewicz P., Rafienia M.♦, Bagheri R.♦, Ghasemi-Mobarakeh L.♦, Kołbuk D., Pahlevanneshan Z.♦, Bonakdar S.H.♦, Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering,
Journal of Biomedical Materials Research Part A, ISSN: 1549-3296, DOI: 10.1002/jbm.a.36309, Vol.106, No.4, pp.1111-1120, 2018Streszczenie: The article is focused on the role of nanohydroxy apatite (nHAp) and cellulose nanofibers (CNFs) as fillers in the electrospun poly (vinyl alcohol) (ES-PVA) nanofibers for bone tissue engineering (TE). Fibrous scaffolds of PVA, PVA/nHAp (10 wt.%), and PVA/nHAp(10 wt.%)/CNF(3 wt.%) were successfully fabricated and characterized. Tensile test on electrospun PVA/nHAp10 and PVA/nHAp10/CNF3 revealed a three-fold and seven-fold increase in modulus compared with pure ES-PVA (45.45 ± 4.77). Although, nanofiller loading slightly reduced the porosity percentage, all scaffolds had porosity higher than 70%. In addition, contact angle test proved the great hydrophilicity of scaffolds. The presence of fillers reduced in vitro biodegradation rate in PBS while accelerates biomineralization in simulated body fluid (SBF). Furthermore, cell viability, cell attachment, and functional activity of osteoblast MG-63 cells were studied on scaffolds showing higher cellular activity for scaffolds with nanofillers. Generally, the obtained results confirm that the 3-componemnt fibrous scaffold of PVA/nHAp/CNF has promising potential in hard TE. Słowa kluczowe: electrospinning, PVA bionanocomposites, scaffolds, bone tissue engineering, cell culture Afiliacje autorów:
Enayati M.S. | - | Isfahan University of Technology (IR) | Behzad T. | - | Isfahan University of Technology (IR) | Sajkiewicz P. | - | IPPT PAN | Rafienia M. | - | Isfahan University of Medical Sciences (IR) | Bagheri R. | - | Isfahan University of Technology (IR) | Ghasemi-Mobarakeh L. | - | Isfahan University of Technology (IR) | Kołbuk D. | - | IPPT PAN | Pahlevanneshan Z. | - | Payame Noor University (IR) | Bonakdar S.H. | - | Pasteur Institute of Iran (IR) |
| | 35p. |
35. |
Urbanek O., Sajkiewicz P., Pierini F., Czerkies M., Kołbuk D., Structure and properties of polycaprolactone/chitosan nonwovens tailored by solvent systems,
Biomedical Materials, ISSN: 1748-6041, DOI: 10.1088/1748-605X/aa5647, Vol.12, No.1, pp.015020-1-12, 2017Streszczenie: Electrospinning of chitosan blends is a reasonable idea to prepare fibre mats for biomedical applications. Synthetic and natural components provide, for example, appropriate mechanical strength and biocompatibility, respectively. However, solvent characteristics and the polyelectrolyte nature of chitosan influence the spinnability of these blends. In order to compare the effect of solvent on polycaprolactone/chitosan fibres, two types of the most commonly used solvent systems were chosen, namely 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and acetic acid (AA)/formic acid (FA). Results obtained by various experimental methods clearly indicated the effect of the solvent system on the structure and properties of electrospun polycaprolactone/chitosan fibres. Viscosity measurements confirmed different polymer–solvent interactions. Various molecular interactions resulting in different macromolecular conformations of chitosan influenced its spinnability and properties. HFIP enabled fibres to be obtained whose average diameter was less than 250 nm while maintaining the brittle and hydrophilic character of the nonwoven, typical for the chitosan component. Spectroscopy studies revealed the formation of chitosan salts in the case of the AA/FA solvent system. Chitosan salts visibly influenced the structure and properties of the prepared fibre mats. The use of AA/FA caused a reduction of Young's modulus and wettability of the proposed blends. It was confirmed that wettability, mechanical properties and the antibacterial effect of polycaprolactone/chitosan fibres may be tailored by selecting an appropriate solvent system. The MTT cell proliferation assay revealed an increase of cytotoxicity to mouse fibroblasts in the case of 25% w/w of chitosan in electrospun nonwovens. Słowa kluczowe: chitosan, electrospinning, PCL/chitosan fibres, solvent system, chitosan salts Afiliacje autorów:
Urbanek O. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Pierini F. | - | IPPT PAN | Czerkies M. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN |
| | 30p. |
36. |
Dulnik J., Denis P., Sajkiewicz P., Kołbuk D., Choińska E.♦, Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system,
Polymer Degradation and Stability, ISSN: 0141-3910, DOI: 10.1016/j.polymdegradstab.2016.05.022, Vol.130, pp.10-21, 2016Streszczenie: Bicomponent polycaprolactone/gelatin and polycaprolactone/collagen nanofibers formed by electrospinning using various solvents were subjected to biodegradation and compared. Hexafluoroisopropanol (HFIP) was used as a reference solvent, while the second, alternative solvent system was the mixture of acetic acid (AA) with formic acid (FA). Biodegradation of investigated materials was manifested mainly by the gelatin leaching, including collagen which is indeed denaturated to gelatin during electrospinning, leading to nanofibers erosion. There was no molecular degradation of PCL during 90 days of biodegradation procedure as deduced from no change in the elongation stress at break. The rate of biopolymer leaching was very fast from all materials during the first 24 h of biodegradation, being related to surface leaching, followed by a slower rate leaching from deeper material layers. Mass measurements showed much faster biopolymer leaching from nanofibers electrospun from AA/FA than from HFIP because of strongly emulsive nature of the solution in the former case. Irrespective of the solvent used, the leaching rate increased with initial content of gelatin. The analysis of Young modulus during biodegradation indicated complex mechanism of changes, including biopolymer mass loss, increase of PCL crystallinity and partial gelatin renaturation. Słowa kluczowe: Bicomponent nanofibers, Biodegradation, Biopolymer Afiliacje autorów:
Dulnik J. | - | IPPT PAN | Denis P. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN | Choińska E. | - | Politechnika Warszawska (PL) |
| | 35p. |
37. |
Kołbuk D., Guimond-Lischer S.♦, Sajkiewicz P., Maniura-Weber K.♦, Fortunato G.♦, Morphology and surface chemistry of bicomponent scaffolds in terms of mesenchymal stromal cell viability,
Journal of Bioactive and Compatible Polymers, ISSN: 0883-9115, DOI: 10.1177/0883911515621571, Vol.1, pp.1-14, 2016Streszczenie: Biological interaction between cells and scaffolds is mediated through events at surfaces. Proteins present in the culture medium adsorb on substrates, generating a protein adlayer that triggers further downstream events governing cell adhesion. Polymer blends often combine the properties of the individual components, for example, can provide mechanical as well as surface properties in one fibre. Therefore, mixtures of synthetic polycaprolactone and gelatin as a denatured form of collagen were electrospun at selected conditions and polymer weight ratios. Fibre morphologies and chemical properties of the surfaces were analysed. These scaffolds were seeded with human mesenchymal stromal cells and their viability was studied. Gelatin addition to polycaprolactone leads to a reduction in fibre diameter. A linear increase in gelatin at the fibre surface was observed in function of the weighed polymers, except for polycaprolactone/gelatin fibres incorporating equal weight ratios. Thereby, a depletion of gelatin at the fibre surface is stated for equally mixed polymers. The depletion of gelatin at the fibre surface is most probably due to hydrophobic interactions between hydrophobic segments of polycaprolactone and gelatin, affecting the spinning mechanism and thus fibre structure. Furthermore, polycaprolactone/gelatin blends show enhanced wettability properties compared to pure gelatin, at least partly due to molecular segregation. Results of in vitro studies reveal an increase in cellular viability and proliferation for cells cultivated on nanofibres containing gelatin, caused by the cell-attractive surface composition as well as the hydrophilic nature of the scaffolds. Contact guidance of cells seeded on parallelised fibres is observed, and DNA tests show evidently enhanced cell numbers on nanofibres containing 20 wt% of gelatin. Słowa kluczowe: Mesenchymal stromal cells, electrospinning, surface, blends, biocompatibility, polymers, bioactivity Afiliacje autorów:
Kołbuk D. | - | IPPT PAN | Guimond-Lischer S. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Sajkiewicz P. | - | IPPT PAN | Maniura-Weber K. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Fortunato G. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) |
| | 20p. |
38. |
Latko P.♦, Kołbuk D., Kozera R.♦, Boczkowska A.♦, Microstructural Characterization and Mechanical Properties of PA11 Nanocomposite Fibers,
Journal of Materials Engineering and Performance, ISSN: 1059-9495, DOI: 10.1007/s11665-015-1817-2, Vol.25, No.1, pp.68-75, 2016Streszczenie: Polyamide 11/multi-walled carbon nanotubes nanocomposite fibers with weight fraction 2, 4, and 6 wt.% and diameter 80 μm were prepared with a twin screw mini-extruder. The morphology and degree of dispersion of the multi-walled carbon nanotubes in the fibers was investigated by using scanning and transmission electron microscopy. In turn, the molecular structure was indicated by using wide-angle x-ray scattering and correlated with thermal analysis. It was found that carbon nanotubes lead to the formation of α phase in the fibers and they show medial level of alignment within the length of the fiber. Mechanical analysis of the fibers shows that apart from the crystallinity content, the tensile strength is strongly dependent on the macroscopic defects of the surface of the fibers. Nanocomposite fibers based on polyamide 11 with carbon nanotubes can be used as a precursor for non-woven or woven fabrics manufacturing process. Słowa kluczowe: aerospace, electron microscopy, nanomaterials, thermal analysis, x-ray Afiliacje autorów:
Latko P. | - | inna afiliacja | Kołbuk D. | - | IPPT PAN | Kozera R. | - | inna afiliacja | Boczkowska A. | - | Politechnika Warszawska (PL) |
| | 20p. |
39. |
Kołbuk D., Guimond-Lischer S.♦, Sajkiewicz P., Maniura-Weber K.♦, Fortunato G.♦, The Effect of Selected Electrospinning Parameters on Molecular Structure of Polycaprolactone Nanofibers,
International Journal of Polymeric Materials and Polymeric Biomaterials, ISSN: 0091-4037, DOI: 10.1080/00914037.2014.945209, Vol.64, No.7, pp.365-377, 2015Streszczenie: The effect of electrospinning parameters on morphology, molecular, and supermolecular structure of polycaprolactone (PCL) fibers was analyzed, with respect to tissue engineering applications. Fibers morphology and structure are mainly determined by solution concentration and collector type. Applied voltage does not significantly influence supermolecular structure (crystallinity) and mechanical stiffness. There is correlation between changes in structure and proliferation of 3T3 cells as evidenced by in vitro study. Processing window of optimal scaffolds is relatively wide, however, variation of electrospinning parameters do not significantly affect their biological functionality. Słowa kluczowe: 3T3 cells, crystallinity, electrospinning, molecular orientation, polycaprolactone, porosity, tissue engineering Afiliacje autorów:
Kołbuk D. | - | IPPT PAN | Guimond-Lischer S. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Sajkiewicz P. | - | IPPT PAN | Maniura-Weber K. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Fortunato G. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) |
| | 25p. |
40. |
Sajkiewicz P., Kołbuk D., Electrospinning of gelatin for tissue engineering – molecular conformation as one of the overlooked problems,
JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION, ISSN: 0920-5063, DOI: 10.1080/09205063.2014.975392, Vol.25, No.18, pp.2009-2022, 2014Streszczenie: Gelatin is one of the most promising materials in tissue engineering as a scaffold component. This biopolymer indicates biocompatibility and bioactivity caused by the existence of specific amino acid sequences, being preferred sites for interactions with cells, with high similarity to natural extracellular matrix. The present paper does not aspire to be a full review of electrospinning of gelatin and gelatin containing nanofibers as scaffolds in tissue engineering. It is focused on the still open question of the role of the higher order structures of gelatin in scaffold’s bioactivity/functionality. Gelatin molecules can adopt various conformations depending on temperature, solvent, pH, etc. Our review indicates the potential ways for formation of α-helix conformation during electrospinning and the methods of further structure stabilization. It is intuitively expected that the native α-helix conformation appearing as a result of partial renaturation of gelatin can be beneficial from the viewpoint of bioactivity of scaffolds, providing thus a much cheaper alternative approach as opposed to expensive electrospinning of native collagen. Słowa kluczowe: gelatin, molecular conformation, electrospinning, nanofibers, scaffolds Afiliacje autorów:
Sajkiewicz P. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN |
| | 25p. |
41. |
Kołbuk D., Sajkiewicz P., Maniura-Weber K.♦, Fortunato G.♦, Structure and morphology of electrospun polycaprolactone/gelatine nanofibres,
EUROPEAN POLYMER JOURNAL, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2013.04.036, Vol.49, pp.2052-2061, 2013Streszczenie: Blends of polycaprolactone (PCL) and gelatine (Ge), being effective materials for tissue engineering strategies, were electrospun at various conditions and polymer weight ratios. The morphology, the supermolecular structure as well as the mechanical properties of resulting submicron sized fibres have been analyzed in relation to electrospinning conditions and PCL/Ge weight ratio. Compared to pure PCL, Ge addition leads to large reduction of fibre diameter and finally to changes of fibre morphology. For parallelised fibres collected on a rotating drum, preferred molecular orientation of PCL crystals is found. With increasing Ge content a general reduction of molecular orientation is observed. In addition, there is peculiar dependence of polycaprolactone crystallinity on the content of Ge, showing maximum at low Ge concentration (20%) as determined by differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS). Such a trend can be explained by hydrophobic interactions in the system containing PCL, gelatine and water, being additional driving forces for crystallization of nonpolar PCL molecules. The presence of water within investigated blend systems has been evidenced experimentally using thermal gravimetric analysis (TGA). Young’s modulus of nonwovens, as determined by uniaxial tensile testing, indicates the effect of additivity of the stiffness of both polymers as well as the influence of preferred molecular orientation. Additional experiments were performed using collagen (Col) as a biopolymeric alternative to Ge. WAXS results show evidently amorphous structure of Col within the blended fibres, indicating strong tendency for denaturation of collagen into gelatine under the influence of hexafluoroisopropanol as a solvent. Słowa kluczowe: Electrospinning, Nanofibres, Blend, Gelatine polycaprolactone, Molecular structure Afiliacje autorów:
Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Maniura-Weber K. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) | Fortunato G. | - | Swiss Federal Laboratories for Materials Science and Technology (EMPA) (CH) |
| | 35p. |
42. |
Paprocki B.♦, Szczepański J., Kołbuk D., Information transmission efficiency in neuronal communication systems,
BMC NEUROSCIENCE, ISSN: 1471-2202, DOI: 10.1186/1471-2202-14-S1-P217, Vol.14(Suppl 1), No.P217, pp.1-2, 2013Streszczenie: The nature and efficiency of brain transmission pro-cesses, its high reliability and efficiency is one of the most elusive area of contemporary science [1]. We study information transmission efficiency by considering a neuronal communication as a Shannon-type channel. Thus, using high quality entropy estimators, we evaluate the mutual information between input and output signals. We assume model of neuron proposed by Levy and Baxter [2], which incorporates all essential qualitative mechanisms participating in neural transmission process. Słowa kluczowe: transmission efficiency, neuronal communication, Shannon-type channe Afiliacje autorów:
Paprocki B. | - | Kazimierz Wielki University (PL) | Szczepański J. | - | IPPT PAN | Kołbuk D. | - | IPPT PAN |
| | 25p. |
43. |
Kołbuk D., Sajkiewicz P., Denis P., Choińska E.♦, Investigations of polycaprolactone/gelatin blends in terms of their miscibility,
BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.2478/bpasts-2013-0066, Vol.61, No.3, pp.629-632, 2013Streszczenie: Synthetic and natural polymers blends represent a new brand of materials with application in wound healing, scaffolds or drug delivery systems. Polycaprolactone/gelatin (PCL/Gt) blends were analyzed in terms of their miscibility. The PCL structure was investigated as a function of Gt content. Changes in the PCL spherulitic structure with Gt content were investigated by a polarizing-interference microscope. The analysis of the glass transition temperature (Tg) of both components as a function of PCL/Gt ratio by differential scanning calorimetry indicates that the system of polycaprolactone/gelatin belongs to a type of s.c. compatible system, being intermediate between miscible and immiscible systems. There is possibility of very limited miscibility of both components. Supplementary wide angle X-ray scattering results are presented. Słowa kluczowe: lends, compatibility, miscibility, polycaprolactone, gelatin Afiliacje autorów:
Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Denis P. | - | IPPT PAN | Choińska E. | - | Politechnika Warszawska (PL) |
| | 25p. |
44. |
Kołbuk D., Sajkiewicz P., Kowalewski T.A., Optical birefringence and molecular orientation of electrospun polycaprolactone fibers by polarizing-interference microscopy,
EUROPEAN POLYMER JOURNAL, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2011.11.012, Vol.48, pp.275-283, 2012Streszczenie: The potential of polarizing-interference Pluta microscope for determination of optical birefringence of individual nanofibers formed by electrospinning was shown. This technique can be applied for measurements of fiber birefringence, practically at diameter above 300 nm. The molecular orientation of individual polycaprolactone (PCL) nanofibers was determined from birefringence assuming the same orientation of both phases, crystal and amorphous. The molecular orientation was determined using DSC crystallinity, crystal intrinsic birefringence calculated for the first time for PCL from bond polarizabilities as well as estimated value of amorphous intrinsic birefringence. Our results indicate that the birefringence and thus molecular orientation are strongly inhomogeneous along the nanofibers, reflecting a complex nature of forces acting during electrospinning process. The average molecular orientation is weak if any, being dependent together with fiber thickness and crystallinity on electrospinning parameters, like applied voltage, concentration and type of solvent. The obtained results indicate that the average molecular orientation displays similar dependence on applied voltage as fiber diameter. Relatively low melting temperature of electrospun nanofibers suggests low crystal size and/or high concentration of defects in crystals. This observation corresponds with low crystallinity and molecular orientation, indicating together relatively low degree of crystal ordering due to high rate of cooling and solvent evaporation during electrospinning, limiting thus crystallization process. Słowa kluczowe: Nanofibers, Electrospinning, Birefringence, Polarizing-interference microscopy, Polycaprolactone Afiliacje autorów:
Kołbuk D. | - | IPPT PAN | Sajkiewicz P. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN |
| | 35p. |