Institute of Fundamental Technological Research
Polish Academy of Sciences

Latest Publications

Publications reported by three months

1. Kalita D., Mulewska K., Jóźwik I., Zaborowska A., Gawęda M., Chromiński W., Bochenek K., Rogal Ł., Metastable β-Phase Ti–Nb Alloys Fabricated by Powder Metallurgy: Effect of Nb on Superelasticity and Deformation Behavior, METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, ISSN: 1073-5623, DOI: 10.1007/s11661-023-07285-5, pp.1-17, 2024nota 8725

This study investigates the effect of Nb concentration on the mechanical properties, superelasticity, as well as deformation behavior of metastable β-phase Ti–Nb alloys produced via powder metallurgy. The alloys were fabricated through mechanical alloying, followed by consolidation using hot pressing. The resulting microstructure comprises fine β-phase grains with TiC carbide precipitates at the grain boundaries. The study reveals non-linear variations in the values of yield strength for the manufactured materials, which were attributed to the occurrence of various deformation mechanisms activated during the loading. It was found that the mechanisms change with the increasing concentration of Nb in the manner: stress-induced martensitic transformation, twinning, slip. However, all these mechanisms were activated at a reduced concentration of Nb compared to the materials obtained by casting technology previously reported in the literature. This is most probably associated with the elevated oxygen content, which affects the stability of the parent β-phase. The study revealed that superelasticity in Ti–Nb-based alloys prepared using powder metallurgy may be achieved by reducing the content of β-stabilizing elements compared to alloys obtained by conventional technologies. In this study, the Ti–14Nb (at. pct) alloy exhibited the best superelasticity, whereas conventionally fabricated Ti–Nb alloys displayed superelasticity at an Nb concentration of approximately 26 at. pct. The developed material exhibited a non-conventional, one-stage yielding behavior, resulting in a superelastic response at significantly higher stresses compared to conventionally fabricated Ti–Nb alloys.

pdf 8725
2. Nwaji N., Juyong G., Mahendra G., Hyojin K., Adewale Hammed P., Abhishek S., Nirpendra S., Jaebeom L., Defect engineered Fe3C@NiCo2S4 trojan nanospike derived from Metal Organic framework as Advanced electrode material for Hybrid supercapacitor., ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c04635, Vol.15, No.29, pp.ACS Applied Material Interfaces-34779–34788, 2024nota 8742

The rational synthesis and tailoring of metal-organic frameworks (MOFs) with multifunctional micro/nanoarchitectures have emerged as a subject of significant academic interest owing to their promising potential for utilization in advanced energy storage devices. Herein, we explored a category of three-dimensional (3D) NiCo2S4 nanospikes that have been integrated into a 1D Fe3C microarchitecture using a chemical surface transformation process. The resulting electrode materials, i.e., Fe3C@NiCo2S4 nanospikes, exhibit immense potential for utilization in high-performance hybrid supercapacitors. The nanospikes exhibit an elevated specific capacity (1894.2 F g-1 at 1 A g-1), enhanced rate capability (59%), and exceptional cycling stability (92.5% with 98.7% Coulombic efficiency) via a charge storage mechanism reminiscent of a battery. The augmented charge storage characteristics are attributed to the collaborative features of the active constituents, amplified availability of active sites inherent in the nanospikes, and the proficient redox chemical reactions of multi-metallic guest species. When using nitrogen-doped carbon nanofibers as the anode to fabricate hybrid supercapacitors, the device exhibits high energy and power densities of 62.98 Wh kg-1 and 6834 W kg-1, respectively, and shows excellent long-term cycling stability (95.4% after 5000 cycles), which affirms the significant potential of the proposed design for applications in hybrid supercapacitors. The DFT study showed the strong coupling of the oxygen from the electrolyte OH- with the metal atom of the nanostructures, resulting in high adsorption properties that facilitate the redox reaction kinetics.

defect engineering, Nanospike, advanced electrode, hybrid, MOF, Supercapacitor

no pdf 8742
3. Nwaji N., Hyojin K., Mahendra G., Lemma Teshome T., Juyong G., Abhishek S., Nirpendra S., Jaebeom L., Sulfur vacancy induced Co3S4@CoMo2S4 nanocomposite as functional electrode for high performance supercapacitor, Journal of Materials Chemistry A, ISSN: 2050-7488, DOI: 10.1039/d2ta08820g, Vol.11, pp.Journal of Material Chemistry A-3640-3652, 2024nota 8743

Vacancy engineering offers an attractive approach to improving the surface properties and electronic
structure of transition metal nanomaterials. However, simple and cost-effective methods for introducing
defects into nanomaterials still face great challenges. Herein, we propose a facile room temperature
two-step technique that utilizes Fe as the dopant to enhance S vacancies in cobalt-based metal–organic
frameworks (MOFs). The Fe–Co-MOF was converted into a hollow Fe–Co3S4 confined in CoMo2S4 to
form Fe–Co3S4@CoMo2S4 nanosheets. The as-prepared material showed enhanced charge storage
kinetics and excellent properties as an electrode material for supercapacitors. The obtained
nanostructure displayed a high specific capacitance (980.3 F g−1 at 1 A g−1) and excellent cycling stability
(capacity retention of 96.5% after 6000 cycles at 10 A g−1). Density functional theory (DFT) calculations
show that introducing defects into the nanostructures leads to more electrons appearing near the Fermi
level, which is beneficial for electron transfer during electrochemical processes. Thus, this work provides
a rational cost-effective strategy for introducing defects into transition metal sulfides and may serve as
a potential means to prepare electrode materials for energy storage.

no pdf 8743
4. Kopeć M., Liu X., Gorniewicz D., Modrzejewski P., Zasada D., Jóźwiak S., Janiszewski J., Kowalewski Z.L., Mechanical response of 6061-T6 aluminium alloy subjected to dynamic testing at low temperature: Experiment and modelling, INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, ISSN: 0734-743X, DOI: 10.1016/j.ijimpeng.2023.104843, Vol.185, No.104843, pp.1-10, 2024nota 8627

The aim of this research was to investigate an effect of low temperature on the mechanical properties and mi-crostructure of 6061-T6 aluminium alloy (AA6061-T6) subjected to dynamic loading. The specimens were subjected to dynamic compression at a low temperature of −80°C in a range of strain rates from 1.25 × 10 3 1/s to 3.4 × 10 3 1/s to compare their mechanical responses. The deformation mechanisms were analysed through EBSD observations during which dynamic recovery, was found as the dominant one. Furthermore, microstruc-tural analysis indicated that deformation under high strain rate conditions and temperature of-80°C enables to keep the constant initial grain size of the material after the loading applied. The material behaviour was modelled using mechanism-based viscoplastic constitutive equations. Furthermore, an accuracy of the developed model was validated by comparing it to experimental data. The set of constitutive equations proposed has been successful in modelling the stress-strain behaviour of the material for the range of strain rates and temperatures encountered in aluminium-forming processes under low-temperature conditions.

Split Hopkinson pressure bar (SHPB),Low temperature,AA6061-T6,Microstructure

pdf 8627
5. Kopeć M., The analysis of strain response for as-received and exploited 10H2M power engineering steel subjected to low cycle fatigue in plastic regime, International Journal of Pressure Vessels and Piping, ISSN: 0308-0161, DOI: 10.1016/j.ijpvp.2023.105110, Vol.207, No.105110, pp.1-6, 2024nota 8694

Thermal shocks occurred during power plant station shutdowns result in notable changes in material microstructure and affect its mechanical behaviour significantly. High temperature gradients as well as internal pressure changes in pipes are also responsible for external and internal stress introduction. Such stress may also exceed the yield strength of the material resulting in its deformation. Thus, in this work, the comparative studies on 10H2M power engineering steel in the as-received and exploited state (280 000h at 540 °C under internal pressure of 1.8 MPa) subjected to low cycle fatigue in the plastic regime were performed. The strain response of both states of steel was monitored for three different values of stress amplitude exceeding the yield strength of the material. The significant differences in strain response were found for both states of steel when subjected to the same stress amplitude

Fatigue,10H2M steel,Mechanical properties,Strain analysis

no pdf 8694
6. Kowalczyk-Gajewska K., Maj M., Bieniek K., Majewski M., Opiela K.C., Zieliński T.G., Cubic elasticity of porous materials produced by additive manufacturing: experimental analyses, numerical and mean-field modelling, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1007/s43452-023-00843-z, Vol.24, pp.34-1-34-22, 2024nota 8722

Although the elastic properties of porous materials depend mainly on the volume fraction of pores, the details of pore distribution within the material representative volume are also important and may be the subject of optimisation. To study their effect, experimental analyses were performed on samples made of a polymer material with a predefined distribution of spherical voids, but with various porosities due to different pore sizes. Three types of pore distribution with cubic symmetry were considered and the results of experimental analyses were confronted with mean-field estimates and numerical calculations. The mean-field ‘cluster’ model is used in which the mutual interactions between each of the two pores in the predefined volume are considered. As a result, the geometry of pore distribution is reflected in the anisotropic effective properties. The samples were produced using a 3D printing technique and tested in the regime of small strain to assess the elastic stiffness. The digital image correlation method was used to measure material response under compression. As a reference, the solid samples were also 3D printed and tested to evaluate the polymer matrix stiffness. The anisotropy of the elastic response of porous samples related to the arrangement of voids was assessed. Young’s moduli measured for the additively manufactured samples complied satisfactorily with modelling predictions for low and moderate pore sizes, while only qualitatively for larger porosities. Thus, the low-cost additive manufacturing techniques may be considered rather as preliminary tools to prototype porous materials and test mean-field approaches, while for the quantitative and detailed model validation, more accurate additive printing techniques should be considered. Research paves the way for using these computationally efficient models in optimising the microstructure of heterogeneous materials and composites.

Pore configuration, Anisotropy, Elasticity, Micro-mechanics, Additive manufacturing

pdf 8722
7. Moazzami Goudarzi Z., Zaszczyńska A., Kowalczyk T., Sajkiewicz P.Ł., Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings, Pharmaceutics, ISSN: 1999-4923, DOI: 10.3390/pharmaceutics16010093, Vol.16, No.1, pp.93-1-27, 2024nota 8730

Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds and cannot promote wound healing. This demand is met by material engineering, through which we can create electrospun wound dressings. Electrospun wound dressings, as well as those based on hydrogels with incorporated antibacterial compounds, can meet these requirements. This manuscript reviews recent materials used as wound dressings, discussing their formation, application, and functionalization. The focus is on presenting dressings based on electrospun materials and hydrogels. In contrast, recent advancements in wound care have highlighted the potential of thermoresponsive hydrogels as dynamic and antibacterial wound dressings. These hydrogels contain adaptable polymers that offer targeted drug delivery and show promise in managing various wound types while addressing bacterial infections. In this way, the article is intended to serve as a compendium of knowledge for researchers, medical practitioners, and biomaterials engineers, providing up-to-date information on the state of the art, possibilities of innovative solutions, and potential challenges in the area of materials used in dressings.

wound dressings, drug delivery systems, thermoresponsive hydrogels

pdf 8730
8. Haghighat Bayan Mohammad A., Rinoldi C., Rybak D., Zargarian Seyed S., Zakrzewska A., Cegielska O., Põhako-Palu K., Zhang S., Stobnicka-Kupiec A., Górny Rafał L., Nakielski P., Kogermann K., De Sio L., Ding B., Pierini F., Engineering surgical face masks with photothermal and photodynamic plasmonic nanostructures for enhancing filtration and on-demand pathogen eradication, Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/d3bm01125a, pp.1-15, 2024nota 8736

The shortage of face masks and the lack of antipathogenic functions has been significant since the recent pandemic's inception. Moreover, the disposal of an enormous number of contaminated face masks not only carries a significant environmental impact but also escalates the risk of cross-contamination. This study proposes a strategy to upgrade available surgical masks into antibacterial masks with enhanced particle and bacterial filtration. Plasmonic nanoparticles can provide photodynamic and photothermal functionalities for surgical masks. For this purpose, gold nanorods act as on-demand agents to eliminate pathogens on the surface of the masks upon near-infrared light irradiation. Additionally, the modified masks are furnished with polymer electrospun nanofibrous layers. These electrospun layers can enhance the particle and bacterial filtration efficiency, not at the cost of the pressure drop of the mask. Consequently, fabricating these prototype masks could be a practical approach to upgrading the available masks to alleviate the environmental toll of disposable face masks.

no pdf 8736
9. Loayza-Aguilar Rómulo E., Carhuapoma-Garay J., Ramos-Falla K., Saldaña-Rojas Guillermo B., Huamancondor-Paz Yolanda P., Campoverde-Vigo L., Merino F., Olivos-Ramirez Gustavo E., Epibionts affect the growth and survival of Argopecten purpuratus (Lamarck, 1819) cultivated in Samanco Bay, Peru, Aquaculture, ISSN: 0044-8486, DOI: 10.1016/j.aquaculture.2023.740042, Vol.578, pp.740042-1-10, 2024nota 8737

Argopecten purpuratus, a mollusk very cultivated in Peru, is a species whose ecological relations with respect to the epibionts that colonize it are not well known. For that reason, the objective of this research was to determine the effect of epibionts on valvar growth, total weight, gonad weight, adductor muscle weight, and survival of this cultured species in Samanco Bay. Four lanterns of 2 m and 10 floors were placed with 25 organisms, of 7 cm each, per floor, in two treatments: with epibiont removal (T1) and without removal (T2). The data was obtained after harvest, and the epibiont species on the right and left valves were identified and quantified in T1 and T2. In addition, the Absolute Growth Rate (AGR) was calculated for the meristic records, and the t Student test was applied to compare averages. Furthermore, mortality was recorded at harvest. The analyses allowed the identification of 43 epibiont species, 3 of them endolithic. The greatest biomass is of filter feeders: 70.1% in T1 and 90.9% in T2, and concentrated in 4 species, with limited development in T1. The biomass on the right valve at T1 and T2 represented 80.7 and 151.8% of the weight of the organism, respectively, and on the left valve 89.3 and 95.1%. All Absolute Growth Rates at T1 were higher than at T2, although without statistical significance. Mortality at T1 and T2 was negligible. This research has determined that the epibionts S. patagonicus, C. intestinalis, Hidroydes sp., and B. neritina, qualified as engineered species, are the predominant species on A. purpuratus in suspended cultures. Likewise, treatments with epibiont removal showed a lower development of these and 39 other associated species of lesser importance in terms of number and biomass. Our results allow us to infer that the development of epibionts can generate important stress in A. purpuratus, resulting in losses in the profitability of companies dedicated to this activity.

Argopecten purpuratus, Aquaculture, Epibiosis, Biofouling, Bivalve

no pdf 8737
10. Tauzowski P., Błachowski B., Lógó J., Optimal topologies considering fatigue with reliability constraint, Advances in Engineering Software, ISSN: 0965-9978, DOI: 10.1016/j.advengsoft.2023.103590, Vol.189, pp.1-12, 2024nota 8738

This paper addresses a challenging engineering problem that combines stress-limited topology optimization, reliability analysis, and plasticity-based low-cycle fatigue. Each of these issues represents a complex problem on its own, necessitating significant computational effort. In this study, we propose a novel approach that integrates safety assessment into the topology optimization process while considering the number of cycles for low-cycle fatigue. Our method employs a linear approximation of the performance function for safety control, incorporating the number of failure cycles within a complex, multi-level load program. The methodology is validated through real experiments, using a finite element model with cubic shape functions that yield nearly identical results between numerical and experimental outcomes in the case of fatigue-resistant design for a bi-axially tensioned structural joint.

Topology optimization, stress constraints, Reliability analysis, low-cycle fatigue, fatigueplasticity

no pdf 8738
11. Nwaji N., Juyong G., My‐Chi N., Huu‐Quang N., Hyojin K., Youngeun C., Youngmi K., Hongxia C., Jaebeom L., Emerging potentials of Fe-based nanomaterials for chiral sensing and imaging, Medicinal Research Review, ISSN: 1098-1128, DOI: 10.1002/med.22003, pp.Journal of Medicinal Research-22003, 2024nota 8744

Fe-based nanostructures have possessed promising properties that make it suitable for chiral sensing and imaging applications owing to their ultra-small size, non-toxicity, biocompatibility, excellent photostability, tunable fluorescence, and water solubility. This review summarizes the recent research progress in the field of Fe-based nanostructures and places special emphases on their applications in chiral sensing and imaging. The synthetic strategies to prepare the targeted Fe-based structures were also introduced. The chiral sensing and imaging applications of the nanostructures are discussed in details.

no pdf 8744
12. Pawłowska A., Ćwierz-Pieńkowska A., Domalik A., Jaguś D., Kasprzak P., Matkowski R., Fura , Nowicki A., Żołek N.S., Curated benchmark dataset for ultrasound based breast lesion analysis, Scientific Data, ISSN: 2052-4463, DOI: 10.1038/s41597-024-02984-z, Vol.11, No.148, pp.1-13, 2024nota 8782

A new detailed dataset of breast ultrasound scans (BrEaST) containing images of benign and malignant lesions as well as normal tissue examples, is presented. The dataset consists of 256 breast scans collected from 256 patients. Each scan was manually annotated and labeled by a radiologist experienced in breast ultrasound examination. In particular, each tumor was identified in the image using a freehand annotation and labeled according to BIRADS features and lexicon. The histopathological classification of the tumor was also provided for patients who underwent a biopsy.
The BrEaST dataset is the first breast ultrasound dataset containing patient-level labels, image-level annotations, and tumor-level labels with all cases confirmed by follow-up care or core needle biopsy result. To enable research into breast disease detection, tumor segmentation and classification, the BrEaST dataset is made publicly available with the CC-BY 4.0 license.

pdf 8782
13. Rybak D., Rinoldi C., Nakielski P., Du J., Haghighat Bayan Mohammad A., Zargarian Seyed S., Pruchniewski M., Li X., Strojny-Cieślak B., Ding B., Pierini F., Injectable and self-healable nano-architectured hydrogel for NIR-light responsive chemo- and photothermal bacterial eradication, JOURNAL OF MATERIALS CHEMISTRY B , ISSN: 2050-7518, DOI: 10.1039/D3TB02693K, pp.1-21, 2024nota 8793

Hydrogels with multifunctional properties activated at specific times have gained significant attention in the biomedical field. As bacterial infections can cause severe complications that negatively impact wound repair, herein, we present the development of a stimuli-responsive, injectable, and in situ-forming hydrogel with antibacterial, self-healing, and drug-delivery properties. In this study, we prepared a Pluronic F-127 (PF127) and sodium alginate (SA)-based hydrogel that can be targeted to a specific tissue via injection. The PF127/SA hydrogel was incorporated with polymeric short-filaments (SFs) containing an anti-inflammatory drug – ketoprofen, and stimuli-responsive polydopamine (PDA) particles. The hydrogel, after injection, could be in situ gelated at the body temperature, showing great in vitro stability and self-healing ability after 4 h of incubation. The SFs and PDA improved the hydrogel injectability and compressive strength. The introduction of PDA significantly accelerated the KET release under near-infrared light exposure and extended its release validity period. The excellent composites’ photo-thermal performance led to antibacterial activity against representative Gram-positive and Gram-negative bacteria, resulting in 99.9% E. coli and S. aureus eradication after 10 min of NIR light irradiation. In vitro, fibroblast L929 cell studies confirmed the materials’ biocompatibility and paved the way toward further in vivo and clinical application of the system for chronic wound treatments.

no pdf 8793
14. Maździarz M., Nosewicz S., Atomistic investigation of deformation and fracture of individual structural components of metal matrix composites, ENGINEERING FRACTURE MECHANICS, ISSN: 0013-7944, DOI: 10.1016/j.engfracmech.2024.109953, Vol.298, pp.109953-1-109953-21, 2024nota 8803

This paper focuses on the development of the atomistic framework for determining the lower scale mechanical parameters of single components of a metal matrix composite for final application to a micromechanical damage model. Here, the deformation and failure behavior of NiAl–Al2O3 interfaces and their components, metal and ceramic, are analyzed in depth using molecular statics calculations. A number of atomistic simulations of strength tests, uniaxial tensile, uniaxial compressive and simple shear, have been performed in order to obtain a set of stiffness tensors and strain–stress characteristics up to failure for 30 different crystalline and amorphous systems. Characteristic points on the strain–stress curves in the vicinity of failure are further analyzed at the atomistic level, using local measures of lattice disorder. Numerical results are discussed in the context of composite damage at upper microscopic scale based on images of the fracture surface of NiAl–Al2O3 composites.

Metal-matrix composites (MMCs), Fracture, Computational modeling, Mechanical testing, Molecular statics

pdf 8803
15. Witecka A., Schmitt J., Courtien M., Gerardin C., Rydzek G., Hybrid mesoporous silica materials templated with surfactant polyion complex (SPIC) micelles for pH-triggered drug release, Microporous and Mesoporous Materials, ISSN: 1387-1811, DOI: 10.1016/j.micromeso.2023.112913, Vol.365, No.112913, pp.1-13, 2024nota 8632

New Surfactant PolyIon Complex (SPIC) micelles were assembled by electrostatic complexation of an antibacterial cationic surfactant, cetylpyridinium chloride (CPC), and a double hydrophilic block copolymer (DHBC) containing a neutral comb block of poly(oligo(ethylene glycol)) methyl ether acrylate (PEOGA) and a weak polyacid block of poly(acrylic acid) (PAA). The corresponding SPIC micelles, with a CPC/PAA core and a PEOGA corona, were successfully used as structure directing and functionalizing agents in a soft and sustainable sol-gel strategy, yielding hybrid mesoporous silica (MS) materials with a monomodal pore size distribution centred at 2.8 nm. The influence of synthesis parameters, including the pH, concentrations and ratios of components, was systematically investigated. The obtained hybrid MS materials were intrinsically functional, with PEOGA blocks anchored in silica walls via H-bonding, while weak polyacid blocks, complexed with CPC, were confined within the mesopores. The response of the materials to pH changes (pH 7.4, 4.2 and 3) indicated remarkable stability of the anchored DHBC, while CPC was selectively released under the acidic conditions typical of orodental biofilm microenvironments. This result is noteworthy, since the release of encapsulated amphiphilic drugs into water is less favorable than that of hydrophilic drugs. Owing to the control of their pore and functionality properties, ordered hybrid silica materials templated and functionalized with SPIC systems will be materials of choice for developing pH-responsive biomedical devices using wet processing techniques

Double hydrophilic block copolymer, Cooperative self-assembly, Surfactant-polyion complex micelle, Stimuli-responsive nanomaterials, Sustainable, Sol-gel synthesis

no pdf 8632
16. Zieliński T.G., Opiela K.C., Dauchez N., Boutin T., Galland M.-A., Attenborough K., Extremely tortuous sound absorbers with labyrinthine channels in non-porous and microporous solid skeletons, APPLIED ACOUSTICS, ISSN: 0003-682X, DOI: 10.1016/j.apacoust.2023.109816, Vol.217, pp.109816-1-13, 2024nota 8724

An assembly of additively-manufactured modules to form two-dimensional networks of labyrinthine slits results in a sound absorber with extremely high tortuosity and thereby a relatively low frequency quarter wavelength resonance. Fully analytical modelling is developed for the generic design of such composite acoustic panels, allowing rapid exploration of various specific designs. In addition to labyrinthine channels in a non-porous solid skeleton, a case is also considered where the skeleton has microporosity such that its permeability is very much lower than that due to the labyrinthine channels alone. The analytical modelling is verified by numerical calculations, as well as sound absorption measurements performed on several 3D printed samples of modular composite panels. The experimental validation required overcoming the non-trivial difficulties related to additive manufacturing and testing samples of extreme tortuosity. However, due to the two-dimensionality and modularity of the proposed design, such absorbers can possibly be produced without 3D printing by assembling simple, identical modules produced separately. The experimental results fully confirmed the theoretical predictions that significant sound absorption, almost perfect at the peak, can be achieved at relatively low frequencies using very thin panels, especially those with double porosity.

Sound absorption,Extreme tortuosity,Double porosity,Acoustic composites,Additive manufacturing

no pdf 8724
17. Makowska K., Szymczak T., Kowalewski Z.L., Fatigue Behaviour of Medium Carbon Steel Assessed by the Barkhausen Noise Method, ACTA MECHANICA ET AUTOMATICA, ISSN: 1898-4088, DOI: 10.2478/ama-2024-0005, Vol.18, No.1, pp.40-47, 2024nota 8727

In this paper, an attempt to estimate the stage of the fatigue process using the Barkhausen noise method is studied. First, microstructural and static tensile tests were carried out and, subsequently, fatigue tests up to failure were conducted. After determination of the material behaviour in the assumed static and dynamic conditions, the interrupted fatigue tests were performed. Each specimen was stressed up to a different number of cycles corresponding to 10%, 30%, 50%, 70% and 90% of fatigue lifetime for the loading conditions considered. In the next step of the experimental programme, the specimens were subjected to the Barkhausen magnetic noise measurements. Various magnetic parameters coming from the rms Barkhausen noise envelopes were determined. The linear relationship betweenthe full-width at half-maximum (FWHM) of the Barkhausen noise envelope and the number of loading cycles to fracture was found. Specimens loaded up to a certain number of cycles were also subjected to a tensile test to assess an influence of fatigue on the fracture features

fatigue, Barkhausen noise, structural steel, fracture, mechanical properties, deformation

no pdf 8727
18. Staszczak M., Urbański L., Cristea M., Ionita D., Pieczyska E.A., Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications, Polymers, ISSN: 2073-4360, DOI: 10.3390/polym16020219, Vol.16, No.2, pp.219-1-219-20, 2024nota 8732

Thermoresponsive shape memory polymers (SMPs) with the remarkable ability to remember a temporary shape and recover their original one using temperature have been gaining more and more attention in a wide range of applications. Traditionally, SMPs are investigated using a method named often “hot-programming”, since they are heated above their glass transition temperature (Tg) and after that, reshaped and cooled below Tg to achieve and fix the desired configuration. Upon reheating, these materials return to their original shape. However, the heating of SMPs above their Tg during a thermomechanical cycle to trigger a change in their shape creates a temperature gradient within the material structure and causes significant thermal expansion of the polymer sample resulting in a reduction in its shape recovery property. These phenomena, in turn, limit the application fields of SMPs, in which fast actuation, dimensional stability and low thermal expansion coefficient are crucial. This paper aims at a comprehensive experimental investigation of thermoplastic polyurethane shape memory polymer (PU-SMP) using the cold programming approach, in which the deformation of the SMP into the programmed shape is conducted at temperatures below Tg. The PU-SMP glass transition temperature equals approximately 65 ◦C. Structural, mechanical and thermomechanical characterization was performed, and the results on the identification of functional properties of PU-SMPs in quite a large strain range beyond yield limit were obtained. The average shape fixity ratio of the PU-SMP at room temperature programming was found to be approximately 90%, while the average shape fixity ratio at 45 ◦C (Tg − 20 ◦C) was approximately 97%. Whereas, the average shape recovery ratio was 93% at room temperature programming and it was equal to approximately 90% at 45 ◦C. However, the results obtained using the traditional method, the so-called hot programming at 65 ◦C, indicate a higher shape fixity value of 98%, but a lower shape recovery of 90%. Thus, the obtained results confirmed good shape memory properties of the PU-SMPs at a large strain range at various temperatures. Furthermore, the experiments conducted at both temperatures below Tg demonstrated that cold programming can be successfully applied to PU-SMPs with a relatively high Tg. Knowledge of the PU-SMP shape memory and shape fixity properties, estimated without risk of material degradation, caused by heating above Tg, makes them attractive for various applications, e.g., in electronic components, aircraft or aerospace structures.

polyurethane shape memory polymer, cold programming, thermal expansion, shape fixity, shape recovery

pdf 8732
19. Liu L., Sznajder P., Ekiel-Jeżewska Maria L.L., Spectral analysis for elastica dynamics in a shear flow, Physical Review Fluids, ISSN: 2469-990X, DOI: 10.1103/PhysRevFluids.9.014101, Vol.9, No.1, pp.014101-1-12, 2024nota 8734

We present the spectral analysis of three-dimensional dynamics of an elastic filament in a shear flow of a viscous fluid at a low Reynolds number in the absence of Brownian motion. The elastica model is used. The fiber initially is almost straight at an arbitrary orientation, with small perpendicular perturbations in the shear plane and out-of-plane. To analyze the stability of both perturbations, equations for the eigenvalues and eigenfunctions are derived and solved by the Chebyshev spectral collocation method. It is shown that their crucial features are the same as in the case of the two-dimensional elastica dynamics in shear flow [Becker and Shelley, Phys. Rev. Lett. 87, 198301 (2001)] and the three-dimensional elastica dynamics in the compressional flow [Chakrabarti et al., Nat. Phys. 16, 689 (2020)]. We find a similar dependence of the buckled shapes on the ratio of bending to hydrodynamic forces as in the simulations for elastic fibers of a nonzero thickness [Słowicka et al., New J. Phys. 24, 013013 (2022)].

pdf 8734
20. Kopeć M., Gunputh U., Macek W., Kowalewski Z.L., Wood P., Orientation effects on the fracture behaviour of additively manufactured stainless steel 316L subjected to high cyclic fatigue, Theoretical and Applied Fracture Mechanics, ISSN: 0167-8442, DOI: 10.1016/j.tafmec.2024.104287, pp.1-20, 2024nota 8740

In this paper, stainless steel 316L (SS316L) bars were additively manufactured (AM) in three orientations (Z – vertical, XY – horizontal, ZX45 – midway between vertical and horizontal) by using the Laser Powder Bed Fusion Melting (LPBF-M) method. The AM specimens were subjected to load control fatigue testing under full tension and compression (R = -1) at stress amplitudes ±350, ±400 and ±450 MPa. The XY and ZX45 printing orientations were found to significantly improve service life. Although similar strain response was found for each orientation when the same stress amplitude was applied, slightly different fracture mechanisms were identified during the post-mortem surface observations.

SS316L,stainless steel,fatigue,additive manufacturing,Laser Powder Bed Fusion Melting (LPBF-M)

no pdf 8740
21. Zhang Y., Nwaji N., Wu L., Jin m., Zhou G., Giersig M., Wang X., Qiu T., Akinoglu E.M., MAPbBr3/Bi2WO6 Z-scheme-Heterojunction Photocatalysts for photocatalytic CO2 reduction, JOURNAL OF MATERIALS SCIENCE, ISSN: 0022-2461, DOI: 10.1007/s10853-023-09220-w, Vol.59, pp.Journal of Material Science-1498-1512, 2024nota 8741

Photocatalytic CO2 reduction has emerged as a promising strategy for converting solar energy into valuable chemicals, capturing the attention of scientists across various disciplines. Organic and inorganic perovskites, particularly methylammonium lead bromide (MAPbBr3), have demonstrated potential in this field due to their remarkable visible-light response and carrier transport properties. However, the catalytic performance of pristine MAPbBr3 has been limited by severe charge recombination, hindering its applicability in photocatalytic systems. Here, we show that a MAPbBr3/Bi2WO6 (MA/BWO) heterojunction significantly enhances photocatalytic CO2 reduction performance compared to individual pristine MA or BWO. This enhancement is evidenced by the superior performance of the 25% MA/BWO composite, which exhibits CO and CH4 release rates of 1.82 μmol/g/h and 0.08 μmol/g/h, respectively. This improvement is attributed to the direct Z-scheme heterojunction formed between MAPbBr3 and Bi2WO6, which facilitates efficient charge separation and suppresses charge recombination. The results challenge the previous understanding of MAPbBr3-based photocatalysts and demonstrate a novel approach for developing highly active organic and inorganic perovskite photocatalysts. The successful application of the MA/BWO heterojunction in photocatalytic CO2 reduction expands the scope of organic and inorganic perovskites in the field of renewable energy conversion. By providing a broader perspective, our findings contribute to the ongoing efforts towards sustainable energy solutions, appealing

no pdf 8741
22. Dyniewicz B., Shillor M., Bajer C.I., An extended 2D Gao beam model, MECCANICA, ISSN: 0025-6455, DOI: 10.1007/s11012-023-01745-3, Vol.59, pp.169-181, 2024nota 8792

This work derives and simulates a two-dimensional extension of the nonlinear Gao beam, by adding the cross-sectional shear variable, similarly to the extension of the usual Bernoulli-Euler beam into the Timoshenko beam. The model allows for oscillatory motion about a buckled state, as well as adds vertical shear of the cross sections, thus reflecting better nonlinear thick beams. The static model is derived from the principle of virtual elastic energy, and is in the form of a highly nonlinear coupled system for the beams transverse vibrations and the motion of the cross sections. The model allows for general distributive transversal and longitudinal loads and a compressive horizontal load acting on its edges.

The model is simulated numerically, using the dynamic version for better insight into the steady solutions. The terms that distinguish our numerical solutions from the solutions of the Gao beam, described in the literature, are highlighted. The numerical scheme and its characteristic finite element matrices allow us to obtain simulation results that demonstrate the type of vibrations of our extended and modified beam, and also the differences between these solutions and those of the Gao beam model.

Gao beam, nonlinear vibration,

pdf 8792
23. Rudnicka Z., Pręgowska A., Glądys K., Perkins M., Proniewska K., Advancements in artificial intelligence-driven techniques for interventional cardiology, Cardiology Journal, ISSN: 1897-5593, DOI: 10.5603/cj.98650, pp.1-31, 2024nota 8794

This paper aims to thoroughly discuss the impact of artificial intelligence (AI) on clinical practice in interventional cardiology (IC) with special recognition of its most recent advancements. Thus, recent years have been exceptionally abundant in advancements in computational tools, including the development of AI. The application of AI development is currently in its early stages, nevertheless new technologies have proven to be a promising concept, particularly considering IC showing great impact on patient safety, risk stratification and outcomes during the whole therapeutic process. The primary goal is to achieve the integration of multiple cardiac imaging modalities, establish online decision support systems and platforms based on augmented and/or virtual realities, and finally to create automatic medical systems, providing electronic health data on patients. In a simplified way, two main areas of AI utilization in IC may be distinguished, namely, virtual and physical. Consequently, numerous studies have provided data regarding AI utilization in terms of automated interpretation and analysis from various cardiac modalities, including electrocardiogram, echocardiography, angiography, cardiac magnetic resonance imaging, and computed tomography as well as data collected during robotic-assisted percutaneous coronary intervention procedures. Thus, this paper aims to thoroughly discuss the impact of AI on clinical practice in IC with special recognition of its most recent advancements.

artificial intelligence (AI), interventional cardiology (IC), cardiac modalities, augmented and/or virtual realities, automatic medical systems

pdf 8794
24. Nwaji N., Getasew Mulualem Z., Juyong G., Hyojin K., Lemma Tushome T., Yujin C., Mahedra G., Hyeyoung S., Jaebeom L., Dimeric NiCo single-atom anchored on ultrathin N-doped 2D molybdenum carbide boosted performance in solid-state supercapacitor, Journal of Energy Storage, ISSN: 2352-152X, DOI: 10.1016/j.est.2024.110671, Vol.83, pp.Journal of Energy Storage-110671, 2024nota 8796

Tuning the electronic structure of single-atom catalysts through dimeric single-atom formation could be an innovative approach to increasing their energy storage activity, but the process of achieving this is challenging. In this study, we designed a simple technique to obtain Nisingle bondCo single atom dimers (SADs) anchored on N-doped molybdenum carbide (N-Mo2C) through in-situ encapsulation of Nisingle bondCo into molybdenum polydopamine, followed by annealing with optimal tuning of nitrogen dopant. The Nisingle bondCo atomic level coordination was confirmed with X-ray absorption spectroscopy. When used as energy storage supercapacitor, The NiCo-SADs showed enhanced specific capacity (1004.8 F g−1 at 1 A g−1), enhanced rate capability (75 %), and exceptional cycling stability (93.6 % with 98.5 % coulombic efficiency) via a dominant capacitive charge storage. The augmented charge storage characteristics are attributed to the collaborative features of the active Nisingle bondCo constituents acting as electron reservoir for effective adsorption of HO− ion during the electrochemical process. The DFT study showed thermodynamically favorable OH− adsorption between the three metal bridges that promoted redox reaction kinetics and enhanced conductivity for the NiCo-SADs. When using N-Mo2C as the anode to fabricate hybrid supercapacitors, the device exhibits high energy density of 69.69 Wh kg−1 at power density of 8200 W kg−1, respectively and shows excellent long-term cycling stability (93.42 % after 3000 cycles), which affirms the potential of the assembled device for applications in solid state supercapacitors.

no pdf 8796
25. Rudnicka Z., Szczepański J., Pręgowska A., Artificial Intelligence-Based Algorithms in Medical Image Scan Segmentation and Intelligent Visual Content Generation—A Concise Overview, Electronics , ISSN: 2079-9292, DOI: 10.3390/electronics13040746, Vol.13, No.4, pp.1-35, 2024nota 8798

Recently, artificial intelligence (AI)-based algorithms have revolutionized the medical image segmentation processes. Thus, the precise segmentation of organs and their lesions may contribute to an efficient diagnostics process and a more effective selection of targeted therapies, as well as increasing the effectiveness of the training process. In this context, AI may contribute to the automatization of the image scan segmentation process and increase the quality of the resulting 3D objects, which may lead to the generation of more realistic virtual objects. In this paper, we focus on the AI-based solutions applied in medical image scan segmentation and intelligent visual content generation, i.e., computer-generated three-dimensional (3D) images in the context of extended reality (XR). We consider different types of neural networks used with a special emphasis on the learning rules applied, taking into account algorithm accuracy and performance, as well as open data availability. This paper attempts to summarize the current development of AI-based segmentation methods in medical imaging and intelligent visual content generation that are applied in XR. It concludes with possible developments and open challenges in AI applications in extended reality-based solutions. Finally, future lines of research and development directions of artificial intelligence applications, both in medical image segmentation and extended reality-based medical solutions, are discussed.

artificial intelligence, extended reality, medical image scan segmentation

pdf 8798
26. Drożyner P., Brodecki A., Szymczak T., Stand testing of springs for drum brake systems, DIAGNOSTYKA, ISSN: 1641-6414, DOI: 10.29354/diag/177242, Vol.24, No.4, pp.1-6, 2024nota 8717

The paper concerns the study of changes in responses of spring for drum brake systems, due to fatigue cycles conducted at operational regimes of vehicles with respect to the number of kilometers. Three types of springs from two manufacturers were examined i.e. double cylindrical, single cylindrical, and conical helical. The springs were subjected to a durability test up to 1×106 loading cycles, covering 300-500 thousand kilometers traveled. Tensile test was used for collecting differences between results for the tested object in the as-receive state and after fatigue. Values of the Pearson correlation coefficient were used to indicate differences between tested objects before and after loading cycles. They show that the obtained results expressed a very strong correlation, which means that the elastic response of the springs during operation over a distance of 300-500 thousand kilometers did not change significantly. Taking into account the recommendations of brake system manufacturers regarding the replacement of brake drums after 150,000 and 50,000 kilometers, respectively, it can be concluded that brake springs are the most durable and reliable element of such a brake system.

drums, springs, fatigue, reliability

no pdf 8717
27. Osial M., Ha G., Vu V., Nguyen P., Nieciecka D., Pietrzyk‑Thel P., Urbanek O., Olusegun S., Wilczewski S., Giersig M., Do H., Dinh T., One-pot synthesis of magnetic hydroxyapatite (SPION/HAp) for 5-fluorouracil delivery and magnetic hyperthermia, Journal of Nanoparticle Research, ISSN: 1388-0764, DOI: 10.1007/s11051-023-05916-x, Vol.26, No.7, pp.1-23, 2024nota 8721

This work presents the synthesis and characterization of a composite made of superparamagnetic iron oxide and hydroxyapatite nanoparticles (SPION/HAp) with a well-developed surface for loading anticancer drugs and for use in magnetic hyperthermia and local chemotherapy. The proposed material was obtained by an easy one-pot co-precipitation method with a controlled ratio of SPION to HAp. The morphology was studied by SEM and TEM, indicating rod-like structures for high HAp content in the composite and granule-like structures with increasing SPION. Its crystallinity, elemental composition, and functional groups were determined by X-ray diffraction, EDS, and FT-IR, respectively. The nanocomposite was then stabilized with citrates (CA), polyethylene glycol (PEG), and folic acid (FA) as agents to improve intracellular absorption, while turbidimetric studies confirmed that only citrates effectively stabilized the magnetic carriers to form a colloidal suspension. Subsequently, 5-fluorouracil (5-FU) was loaded into the magnetic carriers and tested in vitro using the L-929 cell line. The studies showed no cytotoxicity of the citrate-stabilized suspension against fibroblasts and some cytotoxicity after 5-FU release. In addition to in vitro studies, the composite was also tested on biomimetic membranes made of DOPC, DOPE, cholesterol, and DOPS lipids using Langmuir trough. The results show that the resulting suspension interacts with biomimetic membranes, while magnetic hyperthermia studies confirm effective heat generation to achieve therapeutic 42–46 °C and improve drug release from magnetic carriers.

SPION, Hydroxyapatite, Magnetic hyperthermia, Drug delivery, 5-fluorouracil, Biomimetic membranes, Nanostructures, Cancer treatment

no pdf 8721
28. Zabojszcza P., Radoń U., Tauzowski P., Robust Optimization of the Steel Single Story Frame, Acta Polytechnica Hungarica, ISSN: 1785-8860, DOI: 10.12700/APH.21.1.2024.1.2, Vol.21, No.1, pp.9-29, 2024nota 8728

In contemporary design practices, building structures are expected to not only meet safety requirements but also be optimized. However, optimal designs can be highly sensitive to random variations in model parameters and external actions. Solutions that appear effective under nominal conditions may prove inadequate when parameter randomness is considered. To address this challenge, the concept of robust optimization has been introduced, which extends deterministic optimization formulations to incorporate the random variability of parameter values. In this study, we demonstrate the applicability of robust optimization in the design of building structures using a simple orthogonal frame as an example. The static-strength analysis is conducted based on the displacement method, utilizing second-order theory. To assess the safety level of the steel frame, a preliminary evaluation is performed by determining the reliability index and failure probability using the Monte Carlo Method. Robust optimization is then employed, leveraging the second-order response surface. Experimental designs are generated following an optimal Latin hypercube plan. The proposal of a mathematical-numerical algorithm for solving the optimization problem while considering the random nature of design parameters constitutes the innovative aspect of this research.

reliability, robust optimization, second order theory, displacement method

pdf 8728
29. Nazish J., Sohail M., Mahmood A., Shah Syed A., Qalawlus Aya Hamid M., Khaliq T., Nanocrystals loaded collagen/alginate-based injectable hydrogels: A promising biomaterial for bioavailability improvement of hydrophobic drugs, Journal of Drug Delivery Science and Technology, ISSN: 1773-2247, DOI: 10.1016/j.jddst.2023.105291, Vol.91, pp.105291-1-16, 2024nota 8735

The study aims to improve the solubility of poorly soluble drug by developing an optimized formulation of nanocrystals and extend its release profile by incorporating optimized nanocrystals in a biopolymer based injectable hydrogel. Nanocrystals of Silymarin (SM) were developed by anti-solvent precipitation technique followed by homogenization. Various stabilizers were investigated and combination of polyvinyl pyrrolidine K30 (PVP K30) and sodium lauryl sulfate (SLS) in a specific ratio was chosen as a stabilizer for nanocrystals. The optimized nanocrystals possessed mean particle size 172 ± 5.23 nm and PDI of 0.228 ± 0.02. Sodium alginate (Alg) and collagen (Col) based injectable hydrogel in combination with pluronic F127 showed good biocompatibility, mechanical strength and biodegradability. The developed formulation was characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis. The results of FT-IR and TGA showed structural cross-linking between polymers and promising thermal stability of formulation with increasing temperature, respectively. The nanocrystals loaded Alg-Col-F127 injectable hydrogel was degraded completely in 48 h. The results of in vitro release studies and in vivo pharmacokinetic profiling of silymarin nanocrystals laden Alg-Col-F127 injectable hydrogel exhibited controlled release behavior as compared to coarse silymarin suspension and silymarin nanocrystals. Therefore, nanosuspension integrated biopolymer-based hybrid injectable hydrogel system may be used to assist solubility and bioavailability enhancement as well as serve as platform to provide controlled drug release.

Nanocrystals, Injectable hydrogel, Hydrophobic drug, Solubility, Bioavailability

no pdf 8735
30. Refilwe M., Nwaji N., Muthumuni M., Zhi-Long C., Tebello N., Photodynamic therapy characteristics of phthalocyanines in the presence of boron doped detonation nanodiamonds: Effect of symmetry and charge, Phothodygnosis, ISSN: 1873-1597, DOI: 10.1016/j.pdpdt.2021.102705, Vol.37, pp.Photodygnosis and photodynamic therapy-102705, 2024nota 8749

he synthesis, photophysicochemical and photodynamic therapy (PDT) activities of benzothiazole substituted zinc phthalocyanine (Pc): 1 (asymmetrically substituted and composed of no charges), 2 (asymmetrically substituted and composed of three positive charges), and 3 (symmetrically substituted and composed of four positive charges), are presented. The triplet and singlet oxygen quantum yields were highest for complex 2 showing the importance of asymmetry and charge. The complexes are covalently and non-covalently linked to B doped detonation nanodiamonds (B@DNDs) to yield nanohybrids (B@DNDs-1, B@DNDs-2, B@DNDs-3). The presence of B@DNDs, asymmetry and positive charge resulted in improved PDT with the lowest cell viability being observed for B@DNDs-2 at 5%. The cell viability ranged from 5% to 7% for the nanohybrids compared to 19–26% for Pcs alone.

no pdf 8749
31. Grigoryan N., Chudziński P., Role of electron-electron interactions in electron emission from nanotube materials, PHYSICAL REVIEW MATERIALS, ISSN: 2475-9953, DOI: 10.1103/PhysRevMaterials.8.016003, Vol.8, pp.1-16, 2024nota 8795

Nanotubes and nanorods have been recently established as very good materials to work as electron sources in a field emission (FE) process. These are one-dimensional materials and electron-electron interactions are expected to play a crucial role in their physics. Here we study the influence of electron-electron interactions on the field emission. We study the problem in the low energy regime; thus we need to abandon the antiadiabatic approximation and derive tunneling amplitude for a finite duration of the tunneling process. In this work we identified the parameters when exact analytic expression for tunneling current can be given. We obtained formalism that enables one to capture at the same time the collective effects due to electron-electron interactions and thermionic emission. Our results reveal that different types of nanotubes, and their minigap/compressibility parameters, can be easily distinguished based on FE measurements on these materials.

pdf 8795
32. Olusegun Sunday J., Souza Guilhermina de O., Sutuła S., Osial M., Krajewski M., Pękała M., Sobczak K., Felis E., Krysiński P., Methotrexate anti-cancer drug removal using Gd-doped Fe3O4: Adsorption mechanism, thermal desorption and reusability, Groundwater for Sustainable Development, ISSN: 2352-801X, DOI: 10.1016/j.gsd.2024.101103, Vol.25, pp.1-9, 2024nota 8789

Adsorption, Thermal desorption, Gd-doped Fe3O4, Methotrexate

no pdf 8789
33. Ziai Y., Lanzi M., Rinoldi C., Zargarian Seyed S., Zakrzewska A., Kosik-Kozioł A., Nakielski P., Pierini F., Developing strategies to optimize the anchorage between electrospun nanofibers and hydrogels for multi-layered plasmonic biomaterials, Nanoscale Advances, ISSN: 2516-0230, DOI: 10.1039/d3na01022h, pp.1-13, 2024nota 8797

Polycaprolactone (PCL), a recognized biopolymer, has emerged as a prominent choice for diverse biomedical endeavors due to its good mechanical properties, exceptional biocompatibility, and tunable properties. These attributes render PCL a suitable alternative biomaterial to use in biofabrication, especially the electrospinning technique, facilitating the production of nanofibers with varied dimensions and functionalities. However, the inherent hydrophobicity of PCL nanofibers can pose limitations. Conversely, acrylamide-based hydrogels, characterized by their interconnected porosity, significant water retention, and responsive behavior, present an ideal matrix for numerous biomedical applications. By merging these two materials, one can harness their collective strengths while potentially mitigating individual limitations. A robust interface and effective anchorage during the composite fabrication are pivotal for the optimal performance of the nanoplatforms. Nanoplatforms are subject to varying degrees of tension and physical alterations depending on their specific applications. This is particularly pertinent in the case of layered nanostructures, which require careful consideration to maintain structural stability and functional integrity in their intended applications. In this study, we delve into the influence of the fiber dimensions, orientation and surface modifications of the nanofibrous layer and the hydrogel layer's crosslinking density on their intralayer interface to determine the optimal approach. Comprehensive mechanical pull-out tests offer insights into the interfacial adhesion and anchorage between the layers. Notably, plasma treatment of the hydrophobic nanofibers and the stiffness of the hydrogel layer significantly enhance the mechanical effort required for fiber extraction from the hydrogels, indicating improved anchorage. Furthermore, biocompatibility assessments confirm the potential biomedical applications of the proposed nanoplatforms.

pdf 8797
34. Pulov V., Kowalczuk W., Mladenov I.M., Geometry of Enumerable Class of Surfaces Associated with Mylar Balloons, Mathematics, ISSN: 2227-7390, DOI: 10.3390/math12040557, Vol.12, No.4, pp.557-1-18, 2024nota 8801

In this paper, the very fundamental geometrical characteristics of the Mylar balloon like the profile curve, height, volume, arclength, surface area, crimping factor, etc. are recognized as geometrical moments ℐ

Mylar balloons, geometrical moments, elliptic integrals, beta and gamma functions, recursive relations, crimping factor, lemniscate constant

pdf 8801
35. Darban H., Bochenek K., Węglewski W., Basista M.A., Experimental Evaluation and Phase-Field Model of Fracture Behavior of Alumina-Aluminium Graded Composite, Advanced Structured Materials, ISSN: 1869-8433, DOI: 10.1007/978-3-031-45554-4_4, Vol.199, pp.147-166, 2024nota 8726

Multilayered metal-ceramic composites belong to the class of functionally graded materials with a step-wise gradient in material composition. These advanced structural materials can be tailored to meet design requirements. Aluminum-matrix composites are one of the most attractive metal-ceramic composites due to low specific weight, good thermal conductivity, enhanced specific strength, and low cost of the constituent materials. A comprehensive investigation of the fracture properties and mechanisms of layered aluminum-matrix composites is required to enhance their utilization in practical applications.
This chapter is focused on experiments and modeling of fracture in functionally graded AlSi12-Al2O3 composites. Three-layer bulk disks with 10, 20, and 30% volume fractions of Al2O3 are manufactured through powder metallurgy. Single-edge notched samples (SEVNB) are prepared from the bulk material and tested under four-point bending. The fracture tests are simulated using the phase-field modeling of brittle fracture. In the phase-field models, individual layers are considered homogeneous linear elastic isotropic materials with effective properties estimated by the rule of the mixture. The length scale parameter is calibrated by fitting the numerically determined fracture loads to the experimental data. The phase-field model is then used to investigate the impact of the stacking sequence on the load-displacement curves of the fracture specimens. It is revealed that the stacking sequence may significantly affect the load-displacement curves, including changes to the maximum load and post-peak response. The ability of the phase-field model to capture the crack arrestment, branching, and deflection in functionally graded layered materials is shown.

no pdf 8726
36. Kopeć M., Kukla D., Wyszkowski M., Kowalewski Z.L., High-temperature fatigue testing of turbine blades, FAS, 17th CONFERENCE FATIGUE OF AIRCRAFT STRUCTURES, 2024-01-11/01-12, Warszawa (PL), pp.1-1, 2024pdf 8733
37. Mahendra G., Huu-Quang N., Sohyun K., Birhanu Bayissa G., Lemma Teshome T., Nwaji N., My-Chi Thi N., Juyong G., Jaebeom L., Rugged forest morphology of magnetoplasmonic nanorods that collect maximum light for photoelectrochemical water splitting, Nano Micro Small Journal, ISSN: 1613-6829, DOI: 10.1002/smll.202302980, Vol.19, pp.Small-2302980, 2024nota 8745

A feasible nanoscale framework of heterogeneous plasmonic materials and
proper surface engineering can enhance photoelectrochemical (PEC)
water-splitting performance owing to increased light absorbance, efficient
bulk carrier transport, and interfacial charge transfer. This article introduces a
new magnetoplasmonic (MagPlas) Ni-doped Au@FexOy nanorods (NRs)
based material as a novel photoanode for PEC water-splitting. A two stage
procedure produces core–shell Ni/Au@FexOy MagPlas NRs. The first-step is
a one-pot solvothermal synthesis of Au@FexOy. The hollow FexOy nanotubes
(NTs) are a hybrid of Fe2O3 and Fe3O4, and the second-step is a sequential
hydrothermal treatment for Ni doping. Then, a transverse magnetic
field-induced assembly is adopted to decorate Ni/Au@FexOy on FTO glass to
be an artificially roughened morphologic surface called a rugged forest,
allowing more light absorption and active electrochemical sites. Then, to
characterize its optical and surface properties, COMSOL Multiphysics
simulations are carried out. The core–shell Ni/Au@FexOy MagPlas NRs
increase photoanode interface charge transfer to 2.73 mAcm−2 at 1.23 V RHE.
This improvement is made possible by the rugged morphology of the NRs,
which provide more active sites and oxygen vacancies as the hole transfer
medium. The recent finding may provide light on plasmonic photocatalytic
hybrids and surface morphology for effective PEC photoanodes.

no pdf 8745
38. Anthony C. E., Dickson N. U., Nwaji N., Olawale J. O., Obianuju L. N., Miracle E., Christopher U. S., Obinna O. O., David O. I., Green synthesis of silver nanoparticles using leaf extract of Euphorbia sanguine: an in vitro study of its photocatalytic and melanogenesis inhibition activity, Inorganic nano-metal chemistry, ISSN: 2470-1564, DOI: 10.1080/24701556.2021.1891100, Vol.49, pp.Inorganic and nano-metal chemistry-58630, 2024nota 8750

We report on biosynthesis of silver nanoparticles using aqueous leaf extract of Euphorbia sanguinea and its photocatalytic degradation of Congo red dye and melanogenesis inhibition activity of mushroom tyrosine enzyme. Surface Plasmon resonance bands obtained from UV-Vis spectra were within the range 430–436 nm. FT-IR studies reveal the presence of functional groups of the plant metabolites used as stabilizing agents of nanoparticles. The shape of silver nanoparticles is spherical with size ranges about 20–28.8 nm as confirmed by SEM. XRD patterns displayed well-defined crystalline peaks corresponding to the face-centred cubic structures of metallic silver nanoparticles. The results of photocatalysis showed high photocatalytic efficiency of 86% and 90% within 5 min and 60 min, respectively at a rate of solar radiation of in the degradation of Congo red dye. The AgNPs gave dose dependent melanogenesis inhibition activity with IC50 of 71.96 µg/ml, showing non competitive mode of inhibition

no pdf 8750
39. Kupikowska-Stobba B., Domagała J.Z., Kasprzak M., Critical Review of Techniques for Food Emulsion Characterization, Applied Sciences, ISSN: 2076-3417, DOI: 10.3390/app14031069 , Vol.14, No.3, pp.1069--, 2024pdf 8774
40. Cofas Vargas Luis., Poma Bernaola A., Capturing the biomechanics of SARS-COV-2/antibody complexes by GōMartini simulation, BPS 2024, Biophysical Society 68th Annual Meeting, 2024-02-10/02-14, Pennsylvania (US), pp.44a, 2024nota 8802

Molecular dynamics (MD) simulation is a powerful tool for revealing the underlying mechanisms governing protein mechanostability. A typical disadvantage of the all-atom representation is the use of pulling speeds several orders of magnitude higher than those employed in single- molecule force spectroscopy (SMFS). In contrast, coarse-grained (CG) representation has the advantage of reducing the computational cost at the cost of losing information on the interaction strength at protein interfaces. This effect is more pronounced in protein complexes. The GōMartini approach is analternative tool to circumvent this limitation, and in its recent implementation, it employs virtual sites near the C-alpha atom positions in the Martini 3 force field. This approach requires the determination of a contact map that includes the most relevant interactions between residues (i.e., native contacts). Large-scale applications, including mechanical stability and conformational changes, can be studied using the GōMartini. In this work, we have applied this approach to study the mechanostability associated with the immune response. Through refinement of the interaction potential between residues at the interface of the protein complex, we reproduced the results of all-atom MD and contrasted them with reported experimental values. GōMartini approach allows us to approach the speeds of atomic force microscopy (AFM) cantilevers in SMFS while preserving crucial information about the interaction between residues. This method is extremely useful in identifying the most crucial interactions that are responsible for the enhanced mechanostability in SARS-CoV-2 variants, information that can be used to develop antibodies with greater affinity.

SARS-CoV-2, immune evasion, coarse-graining, GōMartini, MD simulation, mAb, nanomechanics

pdf 8802
41. Li C., Qiu T., Li C., Cheng B., Jin M., Zhou G., Giersig M., Wang X., Gao J., Akinoglu E.M., Highly Flexible and Acid−Alkali Resistant TiN Nanomesh Transparent Electrodes for Next-Generation Optoelectronic Devices, ACS Nano, ISSN: 1936-0851, DOI: 10.1021/acsnano.3c05211 , pp.1-10, 2023nota 8586

ransparent electrodes are vital for optoelectronic
devices, but their development has been constrained by the limitations of existing materials such as indium tin oxide (ITO) and newer alternatives. All face issues of robustness, flexibility,conductivity, and stability in harsh environments. Addressing this challenge, we developed a flexible, low-cost titanium nitride (TiN)
nanomesh transparent electrode showcasing exceptional acid−alkali resistance. The TiN nanomesh electrode, created by depositing a TiN coating on a naturally cracked gel film substrate via a sputtering method, maintains a stable electrical performance through
thousands of bending cycles. It exhibits outstanding chemical
stability, resisting strong acid and alkali corrosion, which is a key hurdle for current electrodes when in contact with acidic/alkaline materials and solvents during device fabrication. This, coupled with superior light transmission and conductivity (88% at 550 nm with a sheet resistance of ∼200 Ω/sq), challenges the reliance on conventional materials. Our TiN nanomesh electrode,successfully applied in electric heaters and electrically controlled thermochromic devices, offers broad potential beyond harsh environment applications. It enables alternative possibilities for the design and fabrication of future optoelectronics for advancements in this pivotal field.

transparent electrode, titanium nitride, flexible, corrosion resistant, mesh, smart window

no pdf 8586
42. Nakielski P., Rybak D., Jezierska-Woźniak K., Rinoldi C., Sinderewicz E., Staszkiewicz-Chodor J., Haghighat Bayan Mohammad A., Czelejewska W., Urbanek-Świderska O., Kosik-Kozioł A., Barczewska M., Skomorowski M., Holak P., Lipiński S., Maksymowicz W., Pierini F., Minimally invasive intradiscal delivery of BM-MSCs via fibrous microscaffold carriers, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c11710, pp.1-16, 2023nota 8633

Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but
limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the
safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(L-lactide-co-glycolide) and poly(L-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.

microscaffolds,cell carriers,injectable biomaterials,intervertebral disc,laser micromachining,electrospinning

no pdf 8633
43. Chudziński P., Berben M., Xu X., Wakeham N., Bernáth B., Duffy C., Hinlopen R., Hsu Y., Wiedmann S., Tinnemans P., Jin R., Greenblatt M., Hussey N., Emergent symmetry in a low-dimensional superconductor on the edge of Mottness, Science, ISSN: 0036-8075, DOI: 10.1126/science.abp8948, Vol.382, pp.3-5, 2023nota 8669

Upon cooling, condensed-matter systems typically transition into states of lower symmetry. The converse—i.e., the emergence of higher symmetry at lower temperatures—is extremely rare. In this work, we show how an unusually isotropic magnetoresistance in the highly anisotropic, one-dimensional conductor Li0.9Mo6O17 and its temperature dependence can be interpreted as a renormalization group (RG) flow toward a so-called separatrix. This approach is equivalent to an emergent symmetry in the system. The existence of two distinct ground states, Mott insulator and superconductor, can then be traced back to two opposing RG trajectories. By establishing a direct link between quantum field theory and an experimentally measurable quantity, we uncover a path through which emergent symmetry might be identified in other candidate materials

no pdf 8669
44. Dumbill R., Rabcuka J., Fallon J., Knight S., Hunter J., Voyce D., Barrett Jacob T., Ellen M., Weissenbacher A., Kurniawan T., Bloński S., Korczyk P.M., Ploeg Rutger J., Coussios C., Friend P., Świętach P., Impaired O2 unloading from stored blood results in diffusion-limited O2 release at tissues: evidence from human kidneys, Blood, ISSN: 0006-4971, DOI: 10.1182/blood.2023022385, pp.1-27, 2023nota 8709

The volume of oxygen drawn from systemic capillaries down a partial pressure gradient is determined by the oxygen content of red blood cells (RBCs) and their oxygen-unloading kinetics, although the latter is assumed to be rapid and, therefore, not a meaningful factor. Under this paradigm, oxygen transfer to tissues is perfusion-limited. Consequently, clinical treatments to optimize oxygen delivery aim at improving blood flow and arterial oxygen content, rather than RBC oxygen-handling. Whilst the oxygen-carrying capacity of blood is increased with transfusion, previous studies have shown that stored blood undergoes kinetic attrition of oxygen release, which may compromise overall oxygen delivery to tissues, i.e. transport became diffusion-limited. We sought evidence for diffusion-limited oxygen release in viable human kidneys normothermically perfused with stored blood. In a cohort of kidneys that went on to be transplanted, ex-vivo renal respiration correlated inversely with the time-constant of oxygen-unloading from RBCs used for perfusion. Furthermore, the renal respiratory rate did not correlate with arterial O2 delivery unless this factored the rate of oxygen-release from RBCs, as expected from diffusion-limited transport. In kidneys deemed unsuitable for transplantation, perfusion was alternated between stored and rejuvenated RBCs of the same donation to control oxygen-unloading without intervening ischemia and holding all non-RBC parameters constant. Rejuvenated oxygen-unloading kinetics reversibly improved the kidney's oxygen diffusion capacity and increased cortical oxygen partial pressure by 60%. Thus, oxygen delivery to tissues can become diffusion-limited during perfusion with stored blood, which has implications in scenarios such as ex-vivo organ perfusion, major hemorrhage, and pediatric transfusion.

no pdf 8709
45. Będkowski J., Open source, open hardware hand-held mobile mapping system for large scale surveys, SoftwareX, ISSN: 2352-7110, DOI: 10.1016/j.softx.2023.101618, Vol.25, pp.101618-1-101618-7, 2023nota 8718

This paper presents open-source software for large-scale 3D mapping using an open-hardware hand-held measurement device. This work is dedicated to educational and research purposes. This software is composed of three components: LIDAR odometry, single-session refinement and multi-session refinement. Data refinement uses a pose-graph loop closure technique and an Iterative Closest Point algorithm to minimize the error of the edge. The results are 3D point clouds in LAZ data format (compressed LAS - LIDAR Aerial Survey). It was tested in many real-world scenarios/applications: city-level 3D mapping, culture heritage, creating ground truth data for mobile robots, precise forestry, and large-scale indoor 3D mapping. This software can run on Linux and Windows machines, it does not incorporate GPU computing. It is advised to use at least 32 GB of RAM to cope with large data sets. The optimization framework is implemented from scratch using the Eigen library, thus there is not need to install any additional libraries such as Ceres, g2o, GTSAM, manif, Sophus etc.

A mobile mapping, Lidar odometry, Loop closure, Iterative closest point, Data registration, SLAM

no pdf 8718
46. Altangerel A., Cegielska O., Kołbuk D., Kalaska B., Sajkiewicz P.Ł., On-Demand Sequential Release of Dual Drug from pH-Responsive Electrospun Janus Nanofiber Membranes toward Wound Healing and Infection Control, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c13676, pp.A-M, 2023nota 8720

Drugs against bacteria and abnormal cells, such as antibiotics and anticancer drugs, may save human lives. However, drug resistance is becoming more common in the clinical world. Nowadays, a synergistic action of multiple bioactive compounds and their combination with smart nanoplatforms has been considered an alternative therapeutic strategy to fight drug resistance in multidrug-resistant cancers and microorganisms. The present study reports a one-step fabrication of innovative pH-responsive Janus nanofibers loaded with two active compounds, each in separate polymer compartments for synergistic combination therapy. By dissolving one of the compartments from the nanofibers, we could clearly demonstrate a highly yielded anisotropic Janus structure with two faces by scanning electron microscopy (SEM) analysis. To better understand the distinctive attributes of Janus nanofibers, several analytical methods, such as X-ray diffraction (XRD), FTIR spectroscopy, and contact angle goniometry, were utilized to examine and compare them to those of monolithic nanofibers. Furthermore, a drug release test was conducted in pH 7.4 and 6.0 media since the properties of Janus nanofibers correlate significantly with different environmental pH levels. This resulted in the on-demand sequential codelivery of octenidine (OCT) and curcumin (CUR) to the corresponding pH stimulus. Accordingly, the antibacterial properties of Janus fibers against Escherichia coli and Staphylococcus aureus, tested in a suspension test, were pH-dependent, i.e., greater in pH 6 due to the synergistic action of two active compounds, and Eudragit E100 (EE), and highly satisfactory. The biocompatibility of the Janus fibers was confirmed in selected tests.

Janus nanofiber, on-demand release, dual-drug, antibacterial activity, side-by-side electrospinning

no pdf 8720
47. Gloc M., Przybysz S., Dulnik J., Kołbuk-Konieczny D., Wachowski M., Kosturek R., Ślęzak T., Krawczyńska A., Ciupiński , A Comprehensive Study of a Novel Explosively Hardened Pure Titanium Alloy for Medical Applications, Materials, ISSN: 1996-1944, DOI: 10.3390/ma16227188, Vol.16, No.22, pp.7188--1-19, 2023nota 8584

Pure titanium is gaining increasing interest due to its potential use in dental and orthopedic applications. Due to its relatively weak mechanical parameters, a limited number of components manufactured from pure titanium are available on the market. In order to improve the mechanical parameters of pure titanium, manufacturers use alloys containing cytotoxic vanadium and aluminum. This paper presents unique explosive hardening technology that can be used to strengthen pure titanium parameters. The analysis confirms that explosive induced α-ω martensitic transformation and crystallographic anisotropy occurred due to the explosive pressure. The mechanical properties related to residual stresses are very nonuniform. The corrosion properties of the explosive hardened pure titanium test do not change significantly compared to nonhardened titanium. The biocompatibility of all the analyzed samples was confirmed in several tests. The morphology of bone cells does not depend on the titanium surface phase composition and crystallographic orientation.

explosive hardening, pure titanium, bioimplants, titanium alloys

pdf 8584
48. Zangoli M., Monti F., Zanelli A., Marinelli M., Flammini S., Spallacci N., Zakrzewska A., Lanzi M., Salatelli E., Pierini F., Di Maria F., Multifunctional Photoelectroactive Materials for Optoelectronic Applications Based on Thieno[3,4-b]pyrazines and Thieno[1,2,5]thiadiazoles, Chemistry - A European Journal, ISSN: 0947-6539, DOI: 10.1002/chem.202303590, pp.1-18, 2023nota 8598

In this study, we introduce a novel family of symmetrical thiophene-based small molecules with a Donor–Acceptor–Donor structure. These compounds feature three different acceptor units: benzo[c][1,2,5]thiadiazole (Bz), thieno[3,4-b]pyrazine (Pz), and thieno[1,2,5]thiadiazole (Tz), coupled with electron donor units based on a carbazole-thiophene derivative. Using Density Functional Theory (DFT), we investigate how the molecular geometry and strength of the central acceptor unit impact the redox and spectroscopic properties. Notably, the incorporation of Pz and Tz moieties induces a significant redshift in the absorption and emission spectra, which extend into the near-infrared (NIR) region, simultaneously reducing their energy gaps (~1.4-1.6 eV). This shift is attributed to the increased coplanarity of the oligomeric inner core, both in the ground (S0) and excited (S1) states, due to the enhanced quinoidal character as supported by bond-length alternation (BLA) analysis. These structural changes promote better π-electron delocalization and facilitate photoinduced charge transfer processes in optoelectronic devices. Notably, we show that Pz- and Tz-containing molecules exhibit NIR electrochromic behavior and present ambivalent character in bulk heterojunction (BHJ) solar cells. Finally, theoretical calculations suggest that these molecules could serve as effective two-photon absorption (2PA) probes, further expanding their potential in optoelectronic applications.

pdf 8598
49. Pruchniewski M., Sawosz E., Sosnowska-Ławnicka M., Ostrowska A., Łojkowski M., Koczoń P., Nakielski P., Kutwin M., Jaworski S., Strojny-Cieślak B., Nanostructured graphene oxide enriched with metallic nanoparticles as a biointerface to enhance cell adhesion through mechanosensory modifications, NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/d3nr03581f, Vol.15, No.46, pp.18639-18659, 2023nota 8599

Nanostructuring is a process involving surface manipulation at the nanometric level, which improves the mechanical and biological properties of biomaterials. Specifically, it affects the mechanotransductive perception of the microenvironment of cells. Mechanical force conversion into an electrical or chemical signal contributes to the induction of a specific cellular response. The relationship between the cells and growth surface induces a biointerface-modifying cytophysiology and consequently a therapeutic effect. In this study, we present the fabrication of graphene oxide (GO)-based nanofilms decorated with metallic nanoparticles (NPs) as potential coatings for biomaterials. Our investigation showed the effect of decorating GO with metallic NPs for the modification of the physicochemical properties of nanostructures in the form of nanoflakes and nanofilms. A comprehensive biocompatibility screening panel revealed no disturbance in the metabolic activity of human fibroblasts (HFFF2) and bone marrow stroma cells (HS-5) cultivated on the GO nanofilms decorated with gold and copper NPs, whereas a significant cytotoxic effect of the GO nanocomplex decorated with silver NPs was demonstrated. The GO nanofilm decorated with gold NPs beneficially managed early cell adhesion as a result of the transient upregulation of α1β5 integrin expression, acceleration of cellspreading, and formation of elongated filopodia. Additionally, the cells, sensing the substrate derived from the nanocomplex enriched with gold NPs, showed reduced elasticity and altered levels of vimentin expression. In the future, GO nanocomplexes decorated with gold NPs can be incorporated in the structure of architecturally designed biomimetic biomaterials as biocompatible nanostructuring agents with proadhesive properties.

pdf 8599
50. Mróz Z., Paczelt I., Kucharski S.J., Contact interaction and wear of beam supports resting on a frictional substrate, INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, ISSN: 0020-7403, DOI: 10.1016/j.ijmecsci.2023.108628, Vol.260, No.108628, pp.1-16, 2023nota 8606

The frictional contact response of a beam with attached spherical indenters and supported on a plane substrate is considered for periodically varying normal load. An oblique loading case then occurs as the structural load induces both normal and tangential forces on the contact zone. The cyclic tangential sliding and spin of indenter on the substrate are then accompanied by evolving contact zone related to load variation. Rigid-sliding and slip-sliding friction models have been used to describe analytically cyclic contact response, load-deflection hysteretic relation, wear scar evolution and dissipated energy per cycle assuming linear-elastic material model. The analytical solution has been verified by experimental tests providing data on mechanical response, load-deflection diagrams illustrating transient and steady states and wear scar evolution. The effect of wear debris adhesively bonded to the indenter was found to be essential for increasing friction and wear. The relation of wear volume to the dissipated energy is presented. The analysis is aimed to develop a new type of wear tester applicable to oblique loading cases

Frictional contact, Oblique loading, Friction models, Hysteretic diagrams, Wear growth

no pdf 8606
51. Badora M., Bartosik P., Graziano A., Szolc T.A., Using physics-informed neural networks with small datasets to predict the length of gas turbine nozzle cracks, Advanced Engineering Informatics, ISSN: 1474-0346, DOI: 10.1016/j.aei.2023.102232, Vol.58, No.102232, pp.1-16, 2023nota 8623

We created a Physics-Informed Neural Network (PINN) to model the propagation of fatigue cracks. The analyzed object is a high-pressure Nozzle of an industrial gas turbine. The models are based on a Recurrent Neural Network with an embedded Feedforward Neural Network to estimate the stress intensity factor. The thermal stresses are calculated based on engine operational data, leveraging a Finite Element Analysis. However, the time series are available just for 54% of the start-stop cycles, and only 13 crack measures were recorded. Three separate models were trained based on ten, two, and one observation, respectively. The importance of the empirical data was regulated during the training to avoid solutions inconsistent with the underlying physics. The models generalize well and predict accurately also outside the training domain. Additionally, we propose a novel method of scaling models based on PINNs and transferring knowledge between domains. It enables predicting in the target domain, even if damage measures are unavailable. The obtained results confirm the effectiveness of this approach.

Physics-informed neural networks , Predictive maintenance , Fatigue cracks , Regression analysis , Small data , Turbomachinery

no pdf 8623
52. Telega J., Kaczynski P., Smiałek M., Pawłowski P.K., Szwaba R., Suitableness of SLM Manufactured Turbine Blade for Aerodynamical Tests, Materials, ISSN: 1996-1944, DOI: 10.3390/ma16072866, Vol.16, No.7, pp.1-11, 2023nota 8672

This paper describes some insights on applicability of a Selective Laser Melting and Direct Metal Laser Sintering technology-manufactured turbine blade models for aerodynamic tests in a wind tunnel. The principal idea behind this research was to assess the possibilities of using ‘raw’ DLMS printed turbine blade models for gas-flow experiments. The actual blade, manufactured using the DLMS technology, is assessed in terms of surface quality (roughness), geometrical shape and size (outline), quality of counterbores and quality of small diameter holes. The results are evaluated for the experimental aerodynamics standpoint. This field of application imposes requirements that have not yet been described in the literature. The experimental outcomes prove the surface quality does not suffice to conduct quantitative experiments. The holes that are necessary for pressure measurements in wind tunnel experiments cannot be reduced below 1 mm in diameter. The dimensional discrepancies are on the level beyond acceptable. Additionally, the problem of ‘reversed tolerance’, with the material building up and distorting the design, is visible in elements printed with the DLMS technology. The results indicate the necessity of post-machining of the printed elements prior their experimental usage, as their features in the ‘as fabricated’ state significantly disturb the flow conditions.

additive manufacturing,compressor blade,Direct Metal Laser Sintering (DLMS) technology,experimental aerodynamics,rapid prototyping,Selective Laser Melting SLM

pdf 8672
53. Maździarz M., Comment on “Effects of shear methods on shear strengths and deformation modes of two typical transition metal carbides and their unification”, Physical Review B, ISSN: 2469-9969, DOI: 10.1103/PhysRevB.108.216101, Vol.108, No.21, pp.216101-1-216101-3, 2023nota 8679

Recently, Li et al. [C. Li et al., Phys. Rev. B 107, 224106 (2023)] investigated the mechanical behavior of cubic HfC and TaC under simple shear and pure shear using first-principles calculations. Unfortunately, the paper contains some serious and fundamental flaws in the field of continuum mechanics and nanomechanics.
The results presented appear to be qualitatively and quantitatively incorrect; they would be correct if we were in the small/linear deformation/strain regime, which we are not. A correct description therefore requires a finite/nonlinear deformation/strain apparatus. The solution for simple shear, even from density functional theory calculations, must follow Frenkel’s sinusoidal solution.

Simple shear, Pure shear, First principle calculation

no pdf 8679
54. Byra M., Poon C., Rachmadi Muhammad F., Schlachter M., Skibbe H., Exploring the performance of implicit neural representations for brain image registration, Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-023-44517-5, Vol.13, No.17334 , pp.1-13, 2023nota 8688

Pairwise image registration is a necessary prerequisite for brain image comparison and data integration in neuroscience and radiology. In this work, we explore the efficacy of implicit neural representations (INRs) in improving the performance of brain image registration in magnetic resonance imaging. In this setting, INRs serve as a continuous and coordinate based approximation of the deformation field obtained through a multi-layer perceptron. Previous research has demonstrated that sinusoidal representation networks (SIRENs) surpass ReLU models in performance. In this study, we first broaden the range of activation functions to further investigate the registration performance of implicit networks equipped with activation functions that exhibit diverse oscillatory properties. Specifically, in addition to the SIRENs and ReLU, we evaluate activation functions based on snake, sine+, chirp and Morlet wavelet functions. Second, we conduct experiments to relate the hyper-parameters of the models to registration performance. Third, we propose and assess various techniques, including cycle consistency loss, ensembles and cascades of implicit networks, as well as a combined image fusion and registration objective, to enhance the performance of implicit registration networks beyond the standard approach. The investigated implicit methods are compared to the VoxelMorph convolutional neural network and to the symmetric image normalization (SyN) registration algorithm from the Advanced Normalization Tools (ANTs). Our findings not only highlight the remarkable capabilities of implicit networks in addressing pairwise image registration challenges, but also showcase their potential as a powerful and versatile off-the-shelf tool in the fields of neuroscience and radiology.

pdf 8688
55. Korwek Z., Czerkies M.K., Jaruszewicz-Błońska J., Prus W.J., Kosiuk I., Kochańczyk M.R., Lipniacki T., Nonself RNA rewires IFN-β signaling: A mathematical model of the innate immune response, Science Signaling, ISSN: 1945-0877, DOI: 10.1126/scisignal.abq1173, Vol.16, No.815, pp.1-16, 2023nota 8707

Type I interferons (IFNs) are key coordinators of the innate immune response to viral infection, which, through activation of the transcriptional regulators STAT1 and STAT2 (STAT1/2) in bystander cells, induce the expression of IFN-stimulated genes (ISGs). Here, we showed that in cells transfected with poly(I:C), an analog of viral RNA, the transcriptional activity of STAT1/2 was terminated because of depletion of the interferon-β (IFN-β) receptor, IFNAR. Activation of RNase L and PKR, products of two ISGs, not only hindered the replenishment of IFNAR but also suppressed negative regulators of IRF3 and NF-κB, consequently promoting IFNB transcription. We incorporated these findings into a mathematical model of innate immunity. By coupling signaling through the IRF3–NF-κB and STAT1/2 pathways with the activities of RNase L and PKR, the model explains how poly(I:C) switches the transcriptional program from being STAT1/2 induced to being IRF3 and NF-κB induced, which converts IFN-β–responding cells to IFN-β–secreting cells.

no pdf 8707
56. Nosewicz S., Jenczyk P., Romelczyk-Baishya B., Bazarnik P., Jarząbek D.M., Majchrowicz K., Pakieła Z., Kowiorski K., Chmielewski M., The influence of spark plasma sintering on multiscale mechanical properties of nickel-based composite materials, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2023.146001, pp.146001- , 2023nota 8712

The paper presents a comprehensive investigation of the influence of the main process parameters of spark plasma sintering on the mechanical and microstructural properties of nickel-silicon carbide composites at various scales. Microstructure analysis performed by scanning and transmission electron microscopy revealed a significant interfacial reaction between nickel and silicon carbide due to the decomposition of silicon carbide. The chemical interaction of the matrix and reinforcement results in the formation of a multicomponent interphase zone formed by silicides (Ni31Si12 or/and Ni3Si) and graphite precipitates. Furthermore, several types of structure defects were observed (mainly nano/micropores at the phase boundaries). These significantly influenced the mechanical response of nickel-silicon carbide composites at different levels. At the macroscopic scale, uniaxial tensile tests confirmed that applying a 1000 oC sintering temperature ensured that the manufactured composite was characterised by satisfactory tensile strength, however, with a considerable reduction of material elongation compared to pure nickel. Moreover, the fractography study allowed us to identify a significant difference in the damage mode for certain nickel-silicon carbide samples. Secondly, the interface of the nickel matrix and silicate interphase was tested by bending with microcantilevers to evaluate its deformation behaviour, strength, and fracture characteristics. It was confirmed that a diffusive kind of interface, such as Ni-NiSi, demonstrates unexpected bonding properties with a relatively large range of plastic deformation. Finally, the nanoindentation of three main components of the nickel-silicon carbide composite was executed to evaluate the evolution of nanohardness, Young’s modulus, and elastic recovery due to the application of various spark plasma sintering conditions.

nickel-based composite, silicon carbide, spark plasma sintering, multiscale characterization, mechanical properties, nanoindentation, bending of microcantilevers

no pdf 8712
57. Bar Julia K.K., Lis-Nawara A., Kowalczyk T., Grelewski Piotr G.G., Stamnitz S., Gerber H., Klimczak A., Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11TM) Scaffolds, International Journal of Molecular Sciences, ISSN: 1422-0067, DOI: 10.3390/ijms242316747, Vol.24, No.23, pp.16747-1-20, 2023nota 8715

Bone tissue engineering using different scaffolds is a new therapeutic approach in regenerative medicine. This study explored the osteogenic potential of human dental pulp stem cells (hDPSCs) grown on a hydrolytically modified poly(L-lactide-co-caprolactone) (PLCL) electrospun scaffold and a non-woven hyaluronic acid (HYAFF-11™) mesh. The adhesion, immunophenotype, and osteogenic differentiation of hDPSCs seeded on PLCL and HYAFF-11™ scaffolds were analyzed. The results showed that PLCL and HYAFF-11™ scaffolds significantly supported hDPSCs adhesion; however, hDPSCs’ adhesion rate was significantly higher on PLCL than on HYAFF-11™. SEM analysis confirmed good adhesion of hDPSCs on both scaffolds before and after osteogenesis. Alizarin red S staining showed mineral deposits on both scaffolds after hDPSCs osteogenesis. The mRNA levels of runt-related transcription factor 2 (Runx2), collagen type I (Coll-I), osterix (Osx), osteocalcin (Ocn), osteopontin (Opn), bone sialoprotein (Bsp), and dentin sialophosphoprotein (Dspp) gene expression and their proteins were higher in hDPSCs after osteogenic differentiation on both scaffolds compared to undifferentiated hDPSCs on PLCL and HYAFF-11™. These results showed that PLCL scaffolds provide a better environment that supports hDPSCs attachment and osteogenic differentiation than HYAFF-11™. The high mRNA of early osteogenic gene expression and mineral deposits observed after hDPSCs osteogenesis on a PLCL mat indicated its better impact on hDPSCs’ osteogenic potential than that of HYAFF-11™, and hDPSC/PLCL constructs might be considered in the future as an innovative approach to bone defect repair.

dental stem cells, hDPSCs, osteogenesis, PLCL scaffold, HYAFF-11 scaffold

pdf 8715
58. Zabojszcza P., Radoń U., Tauzowski P., Robust and reliability-based design optimization of steel beams, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, DOI: 10.24425/ace.2023.147651, Vol.69, No.4, pp.125-140, 2023nota 8729

In line with the principles of modern design a building structure should not only be safe but also optimized. In deterministic optimization, the uncertainties of the structures are not explicitly taken into account. Traditionally, uncertainties of the structural system (i.e. material parameters, loads, dimensions of the cross-sections) are considered by means of partial safety factors specified in design codes. Worth noticing, that optimal structures are sensitive to randomness design parameters and deterministic optimal solutions may lead to reduced reliability levels. It therefore seems natural to extend the formulation of deterministic optimization with the random scatter of parameter values. Such a formulation is offered by robust optimization and reliability-based design optimization. The applicability of RBDO is strongly dependent on the availability of the joint probability density function. A formulation of non-deterministic optimization that better adapts to the design realities is robust optimization. Unlike RBDO optimization, this formulation does not require estimation of failure probabilities. In the paper using the examples of steel beams, the authors compare the strengths and weaknesses of both formulations.

first order reliability method, reliability index, reliability-based design optimization, robust optimization

pdf 8729
59. Cheng B., Qiu T., Jin M., Zhou G., Giersig M., Wang X., Akinoglu E.M., Spreading Solution Additives Governs the Quality of Polystyrene Particle-Based Two-Dimensional Opals, LANGMUIR, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.3c00418, Vol.39, pp.8996-9006, 2023nota 8585

wo-dimensional polystyrene sphere opals are important materials for nanotechnology applications and funda-
mental nanoscience research. They are a facile and inexpensive nanofabrication tool, but the quality factor of these opals has drastic differences between reports. Additives like ethanol, ions, and organic molecules in the aqueous particle spreading solution are known to affect the quality factor and growth efficiency of the
produced opals. However, a systematic study on the effect and optimization of some of the most effective additives has not been reported until now. Here, we investigate the influence of additives on the growth efficiency and quality factor of such monolayers formed at the air−water interface without the use of a Langmuir−Blodgett trough. The additives induced large variations in the monolayer quality factor and growth efficiency, and we found that the ideal additive content of the spreading agents is 30 wt % < cethanol < 70 wt %, 0 < cHd 2SOd 4 < 30.5 mM, and 0 < csty < 255.0 mM. This study provides a guideline for the rational composition and additive content of the spreading solution to obtain high-quality two-dimensional opals for further applications in nanofabrication and photonics and will enable researchers and application engineers to produce standardized nanofabrication materials.

no pdf 8585
60. Hańczur P., Szolc T.A., Konowrocki R., Suppression of rotating machine shaft-line torsional vibrations by a driving asynchronous motor using two advanced control methods, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: DOI: 10.24425/bpasts.2023.147925, Vol.71, No.6 ( e147925 ), pp.1-13, 2023nota 8594

Many industrial rotating machines driven by asynchronous motors are often affected by detrimental torsional
vibrations. In this paper a method of attenuation of torsional vibrations in such objects is proposed. Here, an asynchronous motor
under a proper control can simultaneously operate as a source of drive and actuator. Namely, by means of the proper control of
motor operation it is possible to suppress torsional vibrations in the object under study. Using this approach, transient and steady-
state torsional vibrations of the rotating machine drive system can be effectively attenuated as well as its precise operational
motions can be assured. The theoretical investigations are carried out by means of a structural mechanical model of the drive
system and an advanced circuit model of the asynchronous motor controlled using two methods: the direct torque control – space
vector modulation (DTC-SVM) and the rotational velocity controlled torque (RVCT) based on the momentary rotational velocity
of the driven machine working tool. From the obtained results it follows that by means of the RVCT technique steady-state
torsional vibrations induced harmonically and transient torsional vibrations excited by switching various types of control on and
off can be suppressed as effectively as using the advanced vector method DTC-SVM.

rotating machine,drive system,control methods,asynchronous motor,torsional vibrations

pdf 8594
61. Emadi A., Lipniacki T., Levchenko A., Abdi A., Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules, Biology, ISSN: 2079-7737, DOI: 10.3390/biology12121461, Vol.12, No.12, pp.1461-1-12, 2023nota 8597

A cell constantly receives signals and takes different fates accordingly. Given the uncertainty rendered by signal transduction noise, a cell may incorrectly perceive these signals. It may mistakenly behave as if there is a signal, although there is none, or may miss the presence of a signal that actually exists. In this paper, we consider a signaling system with two outputs, and introduce and develop methods to model and compute key cell decision-making parameters based on the two outputs and in response to the input signal. In the considered system, the tumor necrosis factor (TNF) regulates the two transcription factors, the nuclear factor κB (NFκB) and the activating transcription factor-2 (ATF-2). These two system outputs are involved in important physiological functions such as cell death and survival, viral replication, and pathological conditions, such as autoimmune diseases and different types of cancer. Using the introduced methods, we compute and show what the decision thresholds are, based on the single-cell measured concentration levels of NFκB and ATF-2. We also define and compute the decision error probabilities, i.e., false alarm and miss probabilities, based on the concentration levels of the two outputs. By considering the joint response of the two outputs of the signaling system, one can learn more about complex cellular decision-making processes, the corresponding decision error rates, and their possible involvement in the development of some pathological conditions.

cell decision making, decision theory, molecular signaling systems, signal transduction noise, cellular decision error probabilities

pdf 8597
62. Dąbrowska A., Kipa S., Vasilopoulos M., Osial M., The comparative study by Raman spectroscopy of the plastic tide in the three ports of the Mediterranean Sea, Environmental Science and Pollution Research, ISSN: 1614-7499, DOI: 10.1007/s11356-023-30973-z, pp.1-13, 2023nota 8601

Raman spectroscopy, Marine microplastics, Mediterranean Sea, Polymer leakage, Electrochemical analysis

pdf 8601
63. Graczykowski C., Faraj R., Adaptive Impact Mitigation Based on Predictive Control with Equivalent Mass Identification, SENSORS, ISSN: 1424-8220, DOI: 10.3390/s23239471, Vol.23, No.3, pp.9471-1-31, 2023nota 8622

The paper presents the concept of equivalent parameter predictive control (EPPC) elaborated for semi-active fluid-based (hydraulic and pneumatic) shock absorbers equipped with controllable valves and subjected to impact excitation. The undertaken problem concerns the absorption and dissipation of the impact energy with the requirement to minimize the generated reaction force and corresponding impacting object deceleration. The development of a control strategy for a challenging problem with unknown impacting object mass and unknown changes of external and disturbance forces is proposed and discussed in detail. The innovative solution utilizes the paradigm of model
predictive control supplemented by the novel concept of equivalent system parameters identification. The EPPC is based on the online measurement of system response, the computation of the equivalent
mass of the impacting object, and the repetitive solution of the optimal control problem with various prediction intervals and constraints imposed on valve opening. The presented method is proven to operate robustly for unknown excitations, including double-impact conditions, and it has similar efficiency to control methods developed previously for known impact parameters.

adaptive impact absorption,semi-active control,self-adaptive shock absorber,adaptive model predictive control,model identification adaptive control,model predictive control

pdf 8622
64. Łukaszewicz A., Kopeć M., Szczęsny G., Kowalewski Z.L., Characteristics of orthopaedic implants damage and mechanisms of its initiation, INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, ISSN: 1056-7895, DOI: 10.1177/10567895231212329, pp.1-19, 2023nota 8628

Implant fractures complicate orthopaedic procedures requiring secondary surgeries. However, it is not
exactly known when the damage initiation starts and which factors predispose them to the highest
degree. Thus, the aim of the study was to characterize changes observed in orthopaedic implants
after their removal from the bone. Particular efforts were made to determine, which of them occur
during the process of its production, installation, usage and removal. Such identification enabled to specify
the role of lesions emerging during each period and their role in the implant’s deformation or fracture.
The paper was focused on implants dedicated to the stabilization of the femur fractures since the bone
transfers the highest loads. External surface and geometric features of eight representative implants were
observed under standard and stereoscopic cameras, as well as under light and scanning electron microscopes. Macroscopic analysis of the investigated implants exhibited a number of defects in the form of
scratches, abrasions, deformations and chipping. The wear degree of each implant was different and
strictly depended on how it was implanted in the patient’s body, as well as on how the patient exploited
it through his mobility. Four different sources of implant integrity changes were identified: manufacturingrelated changes, implant application-related changes, daily life-related changes and implant removalrelated changes.

Orthopaedic implants, implant’s destruction, intramedullary nail, bone plate, surface analysis, wear

no pdf 8628
65. Staszczak M., Gradys A.D., Golasiński K., Pieczyska E.A., Polyurethane Shape Memory Polymer: structure characterization and estimation of energy storage and dissipation during tension process, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/bpasts.2023.147343, Vol.71(6), No.e147343, pp.1-12, 2023nota 8634

Shape memory polymers (SMP) are new multifunctional materials that are of increasing interest in various functional applications. Among them, polyurethane shape memory polymers (PU-SMP) are particularly attractive due to their combination of shape memory, high strength and biocompatible properties. Developing new applications for PU-SMP requires comprehensive research on their characteristics. This work involved investigating the structure and mechanical behaviour and characterizing the energy storage and dissipation of a thermoplastic PU-SMP with a glass transition temperature (Tg) of 25 °C during tensile loading-unloading. The process of energy storage and dissipation in the PU-SMP was investigated based on the stress-strain curves recorded by a quasi-static testing machine and the temperature changes, accompanying the deformation process, obtained by using a fast and sensitive infrared camera. The results showed that the thermomechanical behaviour of the examined PU-SMP depends significantly on the strain rate. At a higher strain rate, there are higher stress and related temperature changes, which lead to greater energy dissipation. However, the energy storage values estimated during the deformation process turned out to be not significant, indicating that the work supplied to the PU-SMP structure during loading is mainly converted into heat. It should also be noted that the structural investigation revealed no crystalline phase in the investigated PU-SMP

shape memory polymer,infrared camera,thermomechanical couplings,energy storage and dissipation,tension test

pdf 8634
66. Darban H., Luciano R., Basista M.A., Effects of multiple edge cracks, shear force, elastic foundation, and boundary conditions on bucking of small-scale pillars, INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, ISSN: 1056-7895, DOI: 10.1177/10567895231215558, pp.1-22, 2023nota 8654

The buckling instability of micro- and nanopillars can be an issue when designing intelligent miniaturized devices and characterizing composite materials reinforced with small-scale beam-like particles. Analytical modeling of the buckling of miniaturized pillars is especially important due to the difficulties in conducting experiments. Here, a well-posed stress driven nonlocal model is developed, which allows the calculation
of the critical loads and buckling configurations of the miniaturized pillars on an elastic foundation and with arbitrary numbers of edge cracks. The discontinuities in bending slopes and deflection at the damaged cross-sections due to the edge cracks are captured through the incorporation of both rotational and translational springs. A comprehensive analysis is conducted to investigate the instability of pillars containing a range of one to four cracks. This analysis reveals interesting effects regarding the influence of crack location, nonlocality, and elastic foundation on the initial and subsequent critical loads and associated buckling configurations. The main findings are: (i) the shielding and amplification effects related to a system of cracks become more significant as the dimensions of pillars reduce, (ii) the influence of the shear force at the damaged cross-section related to the translational spring must not be neglected when dealing with higher modes of buckling and long cracks, (iii) an elastic foundation decreases the effects of the cracks and size dependency on the buckling loads, and (iv) the effects of the edge cracks on the critical loads and buckling configurations of the miniaturized pillars are highly dependent on the boundary conditions.

pdf 8654
67. Dudy L., Chudziński P., Aulbach J., Rogalev V., Schäfer J., Claessen R., Temperature dependent ARPES of the metallic-like bands in Si(553)-Au, Surface Science, ISSN: 0039-6028, DOI: 10.1016/j.susc.2023.122356, Vol.737, No.122356, pp.1-7, 2023nota 8658

We conducted a thorough investigation into the temperature dependence of the metallic-like bands of Si(553)-Au using angular-resolved photoemission spectroscopy (ARPES). Our study addresses the challenges posed by the short-term stability of the surface and photo-voltage effects, which we overcame to extract changes in the band-filling and Fermi-velocity. Our findings shed light on the low-temperature phase of the step edge in Si(553)-Au, which has been a topic of ongoing debate regarding its structural or electronic nature. Through comparison with theoretical predictions of a structural-related low-temperature to high-temperature phase transition, we discovered that the band-filling and Fermi-velocity do not change accordingly, thereby ruling out this scenario. Our study contributes to a better understanding of this material system and provides an important reference for future research.

no pdf 8658
68. Alaei A., Hejazi M., Vintzileou E., Miltiadou-Fezans A., Skłodowski M., The effect of geometric parameters on natural frequencies of Persian brick masonry arches, Structures, ISSN: 2352-0124, DOI: 10.1016/j.istruc.2023.105666, Vol.58, No.105666, pp.1-20, 2023nota 8665

In this paper, several parametric studies were performed on the dynamic behaviour of seven types of Persian brick masonry arches using the finite element method. The studied parameters included the arch types, arch thickness, arch scale, support conditions, and brick arrangement. The finite element models were calibrated using experimental results obtained from operational modal analysis of an arch constructed in the laboratory. The parametric studies have shown that the type of arch significantly affects the natural frequencies. The increasing of arch thickness leads to increase of the natural frequencies. Simply supported arches exhibit reduced natural frequencies, compared to those fixed at their supports. Brick arrangement has little effect on the natural frequency. Finally, an empirical equation for estimating the fundamental frequency of the studied arches was proposed using the obtained results from finite element models. The high accuracy of the empirical equation was tested through measurements on a real full-scale arch.

Geometric Parameters, Natural Frequencies, Brick Arrangement, Support Conditions, Persian Brick Masonry Arches

pdf 8665
69. Abbasi M., Sohail M., Minhas Muhammad U., Mahmood A., Shah Syed A., Munir A., Kashif M., Folic acid-decorated alginate nanoparticles loaded hydrogel for the oral delivery of diferourylmethane in colorectal cancer, International Journal of Biological Macromolecules, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2023.123585, Vol.233, pp.123585-1-17, 2023nota 8676

The disease-related suffering in colorectal cancer remains prevalent despite advancements in the field of drug delivery. Chemotherapy-related side effects and non-specificity remain a challenge in drug delivery. The great majority of hydrophobic drugs cannot be successfully delivered to the colon orally mainly due to poor solubility, low bioavailability, pH differences, and food interactions. Polymeric nanoparticles are potential drug delivery candidates but there are numerous limitations to their usefulness in colon cancer. The nanoparticles are removed from the body rapidly by p-glycoprotein efflux, inactivation, or breakdown by enzymes limiting their efficiency. Furthermore, there is a lack of selectivity in targeting cancer cells; nanoparticles may also target healthy cells, resulting in toxicity and adverse effects. The study aimed to use nanoparticles for specific targeting of the colorectal tumor cells via the oral route of administration without adverse effects. Folic acid (FA), a cancer-targeting ligand possessing a high affinity for folate receptors overexpressed in colorectal cancers was conjugated to sodium alginate- nanoparticles by NH2-linkage. The folic-acid conjugated nanoparticles (FNPs) were delivered to the colon by a pH-sensitive hydrogel synthesized by the free radical polymerization method to provide sustained drug release. The developed system referred to as the “Hydrogel-Nano (HN) drug delivery system,” was specifically capable of delivering diferourylmethane to the colon. The HN system was characterized by DLS, FTIR, XRD, TGA, DSC, and SEM. The FNPs size, polydispersity index, and zeta potential were measured. The folic acid-conjugation to nanoparticles' surface was studied by UV–visible spectroscopy using Beer-Lambert's law. In-vitro studies, including sol-gel, porosity, drug loading, entrapment efficiency, etc., revealed promising results. The swelling and release studies showed pH-dependent release of the drug in colonic pH 7.4. Cellular uptake and cytotoxicity studies performed on FR-overexpressed Hela cell lines and FR-negative A-549 cell lines showed facilitated uptake of nanoparticles by folate receptors. A threefold increase in Cmax and prolongation of the mean residence time (MRT) to 14.52 +/− 0.217 h indicated sustained drug release by the HN system. The findings of the study can provide a sufficient ground that the synergistic approach of the HN system can deliver hydrophobic drugs to colorectal cancer cells via the oral route, but further in-vivo animal cancer model studies are required.

Hydrogels, Nanoparticles, Folic acid, Carboxymethylcellulose, AMPS

no pdf 8676
70. Gambin B., Nowicki A., In Memoriam Janusz Wójcik Professor of the IPPT PAN, ARCHIVES OF ACOUSTICS, ISSN: 0137-5075, DOI: 10.24425/aoa.2023.146817, Vol.48, No.4, pp.463-464, 2023nota 8684

Janusz Wójcik was born in the heart of Poland near Czarnolas in August 1957. He obtained an M.Sc. Eng. degree at the Warsaw University of Technology in 1983. From 1984 until the last days of his life, he worked at the Institute of Fundamental Technological Research Polish Academy of Sciences in Warsaw. He received his doctoral degree on the basis of the dissertation “Nonlinear EnvelopeWaves in The Vlasov-Maxwell Plasma” in 1990. In 2004, he was given a permanent position of IPPT PAN professor and a year later he was appointed Head of the Ultrasound Introscopy Laboratory at the Department of Ultrasound.

Janusz Wójcik

pdf 8684
71. Stupkiewicz S., Preface, ARCHIVES OF MECHANICS, ISSN: 0373-2029, Vol.75, No.3, pp.247-247, 2023pdf 8702
72. Szczęsny G., Kopec M., Łukaszewicz A., Kowalewski Z.L., Identification of the damage mechanism in orthopaedic implant. Case study including the biomechanical analysis, INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, ISSN: 1056-7895, DOI: 10.1177/10567895231215553, pp.1-12, 2023nota 8708

Implant breaking destabilizing the fracture may be caused by its structural defect, inappropriate use, or massive overloads. We present the patient, who broke the plate stabilizing comminuted clavicular fracture at the sixth postoperative week due to the, primarily reported, simple loading of the limb that should not exceeded admissible limits. Macroscopic examination excluded its manufacturing defect of an explant, but revealed areas of fatigue fractures, as well as anterior and inferior bending of its edges. Mechanical analysis proved sufficient material durability. Those findings clearly showed that the plate broke in consequence of repetitive overloads exceeding its durability. Patient, when acquitted with those results, confessed that the plate broke, while fishing. Moreover, he reported an episode of alcohol overuse that could contribute to implant failure bringing the risk of additional injury. Biomechanical analysis confirmed that mechanical loads throwing the spinner exceed values adequate for plate breaking. Thus, the real circumstances of the complication seem to be unveiled pointing out to facts that some patients disobey postoperative recommendations to avoid overloading of stabilized extremity, thus participating actively in this type of complications, that they dissemble the real circumstances of the complications, and that they may exhibit risky and irrational behavior. Basing on the presented case we concluded that in some cases plaster cast immobilization supporting stabilized fracture may be beneficial precluding banned activities and preventing from secondary injuries reducing the risk of postoperative complications.

clavicle fracture, implant failure, mechanical overloads, postoperative recommendations disobey, insubordinate patient

no pdf 8708
73. Kiełczyński P.M., New Shear Horizontal (SH) Surface-Plasmon-Polariton-like Elastic Surface Waves for Sensing Applications, SENSORS, ISSN: 1424-8220, DOI: 10.3390/s23249879, Vol.23, pp.1-25, 2023nota 8711

The advent of elastic metamaterials at the beginning of the 21st century opened new venues and possibilities for the existence of new types of elastic (ultrasonic) surface waves, which were deemed previously impossible. In fact, it is not difficult to prove that shear horizontal (SH) elastic surface waves cannot exist on the elastic half-space or at the interface between two conventional elastic half-spaces. However, in this paper we will show that SH elastic surface waves can propagate at the interface between two elastic half-spaces, providing that one of them is a metamaterial with a negative elastic compliance

ultrasonic sensors, metamaterial elastic waveguides, negative elastic compliance, shear horizontal (SH) elastic surface waves, SPP electromagnetic waves, phase and group velocity, complex power flow, penetration depth, elastic-electromagnetic analogies

pdf 8711
74. Masoud T., Sobhan S., Influence of temperature on the elastic properties of graphene and graphene-like nanosheets based on the asymptotic homogenization method, Applied Mathematical Modelling, ISSN: 0307-904X, DOI: 10.1016/j.apm.2023.12.021, Vol.127, pp.529-547, 2023nota 8719

In this paper, the effective elastic properties of hexagonal monolayers such as graphene, boron nitride, silicon carbide, and aluminum nitride are evaluated using the asymptotic homogenization method taking into account temperature changes. The effective properties are determined analytically by considering temperature, force constants, bond lengths, and thickness, using atomic interactions within the context of the unit cell problem. The relationship between environmental temperature and the coefficient of thermal expansion is established by considering changes in the values ​​of bond stretching, bond angle bending, and torsion resistance constants at different temperatures from 0 to 1800 K. The results provided by the proposed homogeneous model are consistent with the valid findings of other researchers in the literature. It is found that these different hexagonal nanosheets exhibit isotropic temperature-dependent properties and their Young's and shear modulus decrease almost linearly as the temperature rises, considering a constant coefficient of thermal expansion. However, Poisson's ratio is found to be independent of temperature. Furthermore, the temperature-dependent elastic properties of these nanosheets become nonlinear when the variation of the coefficient of thermal expansion with temperature is taken into account. The Young and shear moduli of the nanosheets increase as the coefficient of thermal expansion decreases and vice versa. The highest elastic modulus values are obtained when the thermal expansion is close to its minimum threshold. However, it is recognized that the elastic modulus of graphene and boron nitride nanosheets is higher than that of silicon carbide and aluminum nitride at any temperature. As an alternative to lengthy computer modeling or rigorous testing, the homogeneous models provided can be used to simulate nanosheets.

Asymptotic homogenization method, Hexagonal nanosheets, Effective mechanical properties, Coefficient of thermal expansion

no pdf 8719
75. Petryk H., On thermodynamic extremal principles in gradient plasticity with energetic forces, Mathematics and Mechanics of Solids, ISSN: 1741-3028, DOI: 10.1177/10812865231196296, pp.1-17, 2023nota 8582

Incremental energy minimization is revisited as a method of determining an incremental solution for rate-independent dissipative solids undergoing isothermal quasi-static deformation. The incremental minimization is applied to the total internal energy of the compound thermodynamic system that consists of a deforming body with internal variables, a conservative loading device, and an ambient heat reservoir. It is shown that the difference between the virtual and actual dissipation rates plays a fundamental role in this minimization, which is related to thermodynamic extremal principles of local and global type. The analysis is carried out within the gradient plasticity framework with the energetic forces derived as the variational derivative of the Helmholtz free energy depending on the spatial gradient of arbitrary internal variables. Specifications are given for existing models of gradient plasticity.

Dissipation, internal variables, gradient, plasticity, energy, minimization, rate-independent, variational

no pdf 8582
76. Shokri A., Melikhov Y., Syryanyy Y., Demchenko Iraida N., Point Defects in Silicon-Doped β-Ga2O3: Hybrid-DFT Calculations, ACS Omega, ISSN: 2470-1343, DOI: 10.1021/acsomega.3c05557, Vol.8, No.46, pp.43732-43738, 2023nota 8629

In this work, hybrid density functional theory calculations are used to evaluate the structural and electronic properties and formation energies of Si-doped β-Ga2O3. Overall, eight interstitial (Sii) and two substitutional (SiGa) positions are considered. In general, our results indicate that the formation energy of such systems is significantly influenced by the charge state of the defect. It is confirmed that it is energetically more favorable for the substitution process to proceed under Ga-poor growth conditions than under Ga-rich growth conditions. Furthermore, it is confirmed that the formation of SiGaI with a tetrahedral coordination geometry is more favorable than the formation of SiGaII with an octahedral one. Out of all considered interstitial positions, due to the negative formation energy of the Si +3 charge state at i8 and i9 interstitial positions over the wide range of Fermi energy, this type of defect can be spontaneously stable. Finally, due to a local distortion caused by the presence of the interstitial atom as well as its charge state, these systems obtain a spin-polarized ground state with a noticeable magnetic moment.

pdf 8629
77. Tarelnyk V., Haponova O., Tarelnyk N., Myslyvchenko O., Aluminizing of Metal Surfaces by Electric-Spark Alloying, Uspekhi Fiziki Metallov, ISSN: 1608-1021, DOI: 10.15407/ufm.24.02.282, Vol.24, No.2, pp.282-318, 2023nota 8635

The analysis of the influence of the parameters of electrospark alloying with an aluminium electrode on the quality (roughness, microstructure of the coating, its continuity, phase composition, and microhardness) of the aluminized layer is presented. The effect of finishing methods after aluminizing is evaluated. The heat resistance of the obtained coatings is studied. Metallographic analysis shows that the coating consists of three sections: a ‘white’ layer, a diffusion zone, and the base metal. With an increase in the discharge energy, such quality parameters of the surface layer as thickness, microhardness of both a ‘white’ layer and a transition zone, and roughness are increased. The continuity of a ‘white’ layer at the discharge energy Wp = 0.52 J is low (of 50–60%); with a subsequent increase in the discharge energy, it increases and, at Wp = 6.8 J, it is of 100%. An increase in the discharge energy during electric-spark alloying (ESA) leads to a change in the chemical and phase compositions of the layer: at low discharge energies, a layer is formed, consisting mainly of α-Fe and aluminium oxides. As Wp increases, the layer consists of iron and aluminium intermetallic compounds, as well as free aluminium, that is confirmed by the data of local x-ray microanalysis. For practical application, it is possible to recommend the process of aluminizing by the ESA method, using the modes (discharge energy in the range of 4.6–6.8 J and productivity of 2.0–3.0 cm2/min). Such process provides the formation of a ‘white’ layer with a thickness of 70–130 µm, microhardness of 5000–7500 MPa, roughness (Ra) of 6–9 µm, and continuity of 95–100%. In order to increase the thickness of the aluminized layer, it is recommended to preliminarily apply grease containing aluminium powder to the steel surface and, without waiting for it to dry, carry out ESA with an aluminium electrode. In this case, the coating continuity is of 100%, the layer thickness is of up to 200 µm, and the microhardness is of 4500 MPa. The paper presents the results of study of the quality parameters of multicomponent aluminium-containing coatings of Al–S, Al–C–S, and Al–C–B systems. Replacing the aluminium electrode with graphite one leads to a decrease in the thickness and continuity of a ‘white’ layer, respectively, to 50 µm and 30%. In turn, the microhardness on the surface increases to 9000 MPa. The addition of 0.7 boron to the consistency substance leads to an increase in the thickness and continuity of a ‘white’ layer, respectively, up to 60 µm and 70%. The microhardness on the surface rises to 12000 MPa. In order to reduce the roughness of the surface layer and to obtain continuous coatings, it is recommended to carry out ESA with an aluminium electrode, but at lower modes.

electrospark alloying, coating, aluminizing, microhardness, continuity, roughness, structure, x-ray diffraction analysis, x-ray spectral analysis

pdf 8635
78. Meissner M.W., The effect of evanescent modes on low-frequency sound field in rectangular rooms, VIBRATIONS IN PHYSICAL SYSTEMS, ISSN: 0860-6897, DOI: 10.21008/j.0860-6897.2023.2.05, Vol.34, No.2, pp.1-8, 2023nota 8664

The paper investigates the sound field excited by a boundary pure-tone source in rigid-walled rectangular rooms. This approach is applicable in the low-frequency range, where sound absorption by wall surfaces can be considered negligible. The sound pressure was theoretically determined by applying the Green's function based on the cut-on and evanescent modes expansion instead of the usual normal mode expansion. The theoretical model was used to predict the spatial distribution of the sound pressure level at different source frequencies. The calculation results have shown that for audible frequencies below the cut-off frequency, the plane wave mode and evanescent modes strongly interfere which results in an interference pattern with large dips in the pressure level forming a continuous curve. A shape of this curve is highly dependent on the excitation frequency. These dips have been found to occur when the sound associated with the plane wave mode is cancelled by the sound produced by evanescent modes.

rectangular room, evanescent modes, plane wave mode, sound cancellation, sound intensity

pdf 8664
79. Farooq T., Sohail M., Shah Syed A., Mahmood A., Qalawlus Aya Hamid M., Kashif Mehboob Ur R., Kousar M., Colloidal curcumin-laden pH-responsive hydrogels: A promising approach to enhance solubility, dissolution, and permeation of hydrophobic drug, Journal of Drug Delivery Science and Technology, ISSN: 1773-2247, DOI: 10.1016/j.jddst.2023.104471, Vol.84, pp.104471-1-15, 2023nota 8674

Oral drug delivery systems have innumerable advantages, despite their precedence, the delivery of lipophilic drugs belonging to biopharmaceutical class II and IV, which has challenges associated with their solubility and permeability, leading to the limitations of this route. To address these barriers, nanocarrier systems combined with biomaterials are considered one of the pre-eminent approaches. Therefore, in this study pH-responsive pullulan-based hydrogels were developed, which were loaded with curcumin nanocrystals, micelles and coarse curcumin. In-vitro characterization studies, including dynamic light scattering, Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction supported the development of hydrogels. The swelling index showed that developed hydrogels have significant swelling at pH 7.4, as the optimized formulation shows a “q value” of 5.938% at higher pH and 2.382% at lower pH. Additionally, the nanocrystal-laden hydrogel showed 86.250% drug release at pH 7.4, and better release than micelles and coarse curcumin-laden hydrogel. Moreover, nanocrystals showed a 1-fold increase in the solubility of curcumin, enhanced physical stability, and 82.81% permeation as compared with formulations. Conclusively, the outcome of the studies distinctly revealed a promising approach for successfully developing Pu-g-MAA hydrogels and the inclusion of lipophilic drugs in them.

Nanocrystals, Micelles, Curcumin, Controlled release, pH sensitive, Hydrogels

no pdf 8674
80. Śniadecki M., Jaworek P., Chmielewska Z., Poniewierza P., Stasiak M., Danielkiewicz M., Stencelewski D., Brzeziński M., Boyke Zuzanna A., Wycinka E., Sunil M., Nguyen M., Klasa-Mazurkiewicz D., Koziełek K., Rak P., Wolny Y., Liro M., Guzik Paweł W., Dobruch-Sobczak K., Wydra D., Protocol of Breast Cancer Prevention Model with Addition of Breast Ultrasound to Routine Gynecological Visits as a Chance for an Early Diagnosis and Treatment in 25 to 49-Year-Old Polish Females, Diagnostics, ISSN: 2075-4418, DOI: 10.3390/diagnostics13020227, Vol.13, No.227, pp.1-10, 2023nota 8686

The low attendance rate for cancer screening tests in Poland is a major healthcare concern that requires specific analysis and the development of implementation recommendations for prevention, and both actions are likely to benefit culturally similar countries. Four female cancers account for approximately 20% of all cancer cases—breast cancer, cervical cancer, endometrial cancer, and ovarian cancer—suggesting that gynecologists have a significant preventative role. Of the four, breast cancer and cervical cancer are among the 10 most common malignant neoplasms globally, regardless
of gender, occur only in women and are known to have effective screening measures. Our research aims to create a screening model that combines cervical cancer and breast cancer to maximize health outcomes for women at risk of both cancers. In the study protocol, we have created a model that maximizes benefits for patients with minimal additional costs to the health care system. To achieve the set goal, instead of regular clinical breast exams as recommended by the gynecological societies, we proposed an ultrasound examination, during which palpation may also be performed (in the
absence of elastography). We present a scheme for such a protocol that takes into consideration all types of prevention in both cancers, and that emphasizes breast ultrasound as the most frequently missing element. Our study includes a discussion of the strengths and weaknesses of our strategy, and the crucial need for infrastructure and education for the successful implementation of the program. We conclude that our model merits consideration and discussion among health-care decision makers, as the screening changes we propose have significant potential benefits for the female population.

screening, cervical cancer, breast cancer, ultrasonography, mammography, value-based healthcare, health policy

pdf 8686
81. Glimm T., Kaźmierczak B.A., Newman S.A., Bhat R., A two-galectin network establishes mesenchymal condensation phenotype in limb development, MATHEMATICAL BIOSCIENCES, ISSN: 0025-5564, DOI: 10.1016/j.mbs.2023.109054, Vol.365, No.3, pp.1-11, 2023nota 8692

Previous work showed that Gal-1A and Gal-8, two proteins belonging to the galactoside-binding galectin family, are the earliest determinants of the patterning of the skeletal elements of embryonic chicken limbs, and further, that their experimentally determined interactions in the embryonic limb bud can be interpreted via a reaction–diffusion–adhesion (2GL: two galectin plus ligands) model. Here, we use an ordinary differential equation-based approach to analyze the intrinsic switching modality of the 2GL network and characterize the network behavior independent of the diffusive and adhesive arms of the patterning mechanism. We identify two states: where the concentrations of both the galectins are respectively, negligible, and very high. This bistable switch-like system arises via a saddle–node bifurcation from a monostable state. For the case of mass-action production terms, we provide an explicit Lyapunov function for the system, which shows that it has no periodic solutions. Our model therefore predicts that the galectin network may exist in low expression and high expression states separated in space or time, without any intermediate states. We test these predictions in experiments performed with high density cultures of chick limb mesenchymal cells and observe that cells inside precartilage protocondensations express Gal-1A at a much higher rate than those outside, for which it was negligible. The Gal-1A and -8-based patterning network is therefore sufficient to partition the mesenchymal cell population into two discrete cell states with different developmental (chondrogenic vs. non-chondrogenic) fates. When incorporated into an adhesion and diffusion-enabled framework this system can generate a spatially patterned limb skeleton.

Limb development,Galectins,Cell state transition,Switch-like regulatory network,Ordinary differential equations,Lyapunov function,Saddle–node bifurcation

no pdf 8692
82. Lisowski P., Glinicki M.A., Promising biomass waste–derived insulation materials for application in construction and buildings, Biomass Conversion and Biorefinery, ISSN: 2190-6815, DOI: 10.1007/s13399-023-05192-8, pp.1-18, 2023nota 8710

Current insulation materials applied in construction engineering and the building industry are generally petrochemical-based polymers and recycled thermal insulation materials. The environmental effects of these materials’ production processes aresubstantial, despite their high thermal insulation performance. Consequently, the researchers conclude that it is essential to develop and produce insulating materials with superior thermal properties, minimal environmental impact, and a reasonable cost. The study concentrated on the application of insulation materials derived from biomass in the development of thermal insulation. The purpose of this review is to investigate and develop the possibilities of using biomass wastes as renewable and eco-friendly thermal insulation materials for construction engineering and the building industry. The thermal conductivity of those materials was measured using the hot plate and hot box methods, two of the most widely used hot processing methods. With a relatively low thermal conductivity (< 0.100 W·m−1·K−1), this review provides critical scientific insight into potential building insulation materials derived from biodegradable and abundant resources. It was observed that these materials are appealing for use in building and construction because they have a number of potential advantages from technical, economic, environmental, and green credentials perspectives. The collection of information enables some conclusions regarding the different biomass waste–derived insulation materials that have already been investigated and identifies gaps in the literature. Finally, the scope of commercialization pathways and future research directions to validate the proposed material alternatives’ claim for commercial-scale applications has been identified in this review

Thermal conductivity, Building insulation materials, Biomass valorization, Hot plate method, Hot box method

no pdf 8710
83. Jannasz I., Brzeziński J., Mańczak M., Sondej T., Targowski T., Rysz J., Olszewski R., Is the association between Pulse Wave Velocity and Bone Mineral Density the same for men and women? - a systematic review and meta-analysis, Archives of Gerontology and Geriatrics, ISSN: 0167-4943, DOI: 10.1016/j.archger.2023.105309, pp.1-23, 2023nota 8714

Brachial aortic Pulse Wave Velocity (baPWV) and bone mineral density (BMD) are important indicators of cardiovascular health and bone strength, respectively. However, the gender-specific association between baPWV and BMD remains unclear. The aim of our study is to evaluate the relationship between baPWV and
BMD in men and women populations Methods: A comprehensive search was conducted in electronic databases for relevant studies published between the 1th and 30rd of April 2023. Studies reporting the correlation between baPWV and BMD in both males and
females were considered. A random-effects model was used to calculate pooled correlation coefficients (r). Results: Relevant data for both genders were found in six articles. In all publications included in the meta-analysis, the total number of studied individuals was 3800, with 2054 women and 1746 men. Pooled correlation coefficient was -0,24 (95% CI: -0.34; -0.15) in women population, and -0.12 (95%CI: -0.16, -0.06) in
men. Conclusions: Based on the published data, we found that baPWV is negatively correlated with bone density in women. However, in men we do not find such a
relationship. These findings suggest the importance of considering gender-specific factors when assessing the cardiovascular and bone health relationship.

Bone mineral density, osteoporosis, brachial aortic Pulse Wave Velocity, arterial stiffness, gender differences

pdf 8714
84. Kleiber M., Tak dla wiarygodnych programów,nie dla plemiennej nienawiści, NAUKA, ISSN: 1231-8515, DOI: 10.24425/nauka.2023.144951, Vol.1, pp.133-137, 2023pdf 8607
85. Kleiber M., Masowe migracje ludności– rozwiązywalny problem czy nieuniknione dramaty?, NAUKA, ISSN: 1231-8515, DOI: 10.24425/nauka.2023.148225, Vol.4, pp.37-43, 2023pdf 8608
86. Rinoldi C., Kijeńska-Gawrońska E., Heljak M., Jaroszewicz J., Kamiński A., Khademhosseini A., Tamayol A., Swieszkowski W., Mesoporous Particle Embedded Nanofibrous Scaffolds Sustain Biological Factors for Tendon Tissue Engineering, ACS Materials Au, ISSN: 2694-2461, DOI: 10.1021/acsmaterialsau.3c00012, Vol.3, No.6, pp.636-645, 2023pdf 8667
88. Fura Ł., Kujawska T., A numerical algorithm for reducing the time of HIFU thermal ablation of large tissue volumes and its experimental verification, PCBBE, Polish Conference on Biocybernetics and Biomedical Engineering, 2023-09-27/09-29, Łódź (PL), pp.93-93, 2023pdf 8580
89. Kaplińska-Kłosiewicz P., Czarnecka A., Strzemiecki , Andrzejewski K., Kaczyńska K., Fura Ł., Kujawska T., Sulejczak D., USE OF HIGH-INTENSITY FOCUSED ULTRASOUND (HIFU) IN PERCUTANEOUS ABLATION OF IMPLANTABLE MAMMARY TUMOUR IN RATS, XXIX Congress of the Polish Physiological Society and the Federation of European Physiological Societies, 2023-09-21/09-23, Łódź (PL), pp.1-1, 2023pdf 8581
90. Jain A., Michalska M., Pietrzyk-Thel P., Development of surface modified carbon material electrode for EDLC application, E-MRS 2023, The Fall Meeting of the European Materials Research Society, 2023-09-18/09-21, Warszawa (PL), pp.1-1, 2023nota 8587

Supercapacitors, Activated Carbon, Polymer gel electrolyte, Surface modification

pdf 8587
91. Kowalewski Z.L., Kopeć M., Brodecki A., EXPERIMENTAL ANALYSIS AND MODELLING OF FATIGUE CRACK INITIATION MECHANISMS, ICDM4, The Fourth International Conference on Damage Mechanics, 2023-05-15/05-18, Baton Rouge, Louisiana (US), pp.1-1, 2023nota 8588

fatigue crack initiation, micro-plasticity, damage evolution, optical ESPI method, micro indentation

pdf 8588
92. Kowalewski Z.L., Kopeć M., Brodecki A., Monitoring of fatigue damage development in as-received and exploited 10CrMo9-10 power engineering steel supported by Digital Image Correlation, ICM14, 14th International Conference on Mechanical Behaviour of Materials, 2023-07-12/07-14, Santiago (CL), pp.1-2, 2023pdf 8589
94. Kowalewski Z.L., Dubey V.P., Kopeć M., Yield surface determination of CP-Ti and its evolution reflecting prior deformation under complex loading, International Conference on Lightweight Materials and Manufacture, 2023-10-23/10-26, Shenzhen (CN), pp.1-1, 2023pdf 8591
95. Szymczak T., Kowalewski Z.L., ANISOTROPIC FEATURES OF WELDING JOINTS MADE OF HIGHSTRENGTH STEEL, DAS 2023, 39th Danubia-Adria Symposium on Advances in Experimental Mechanics, 2023-09-26/09-29, Siofok (HU), pp.1-2, 2023pdf 8592
97. Węglewski W., Basista M., Bochenek K., Capek J., Thermal Residual Stresses Effect in Functionally Graded Metal Matrix Composite – Experiment and Simulation, COMPOSITES 2023, 9th ECCOMAS Thematic Conference on the Mechanical Response of Composites: COMPOSITES 2023, 2023-09-12/09-14, Trapani (IT), pp.1, 2023pdf 8595
98. Dąbrowski M., Kuziak J., Dziedzic K., Glinicki M.A., Influence of Environmental Conditions on Steel Corrosion in Concrete Exposed to Gamma Radiation, Materials Proceedings, ISSN: 2673-4605, DOI: 10.3390/ materproc2023013044, Vol.13, No.44, pp.1-7, 2023nota 8600

This article examines the problem of the service life of reinforced concrete structures intended for nuclear power plants and radiation waste storage bunkers when exposed to radiation. This research focused on assessing the corrosion resistance of steel bars under conditions of simultaneous exposure to gamma radiation and various environmental conditions affecting the rate of carbonation. Electrochemical measurements of steel bars were carried out on samples in three environmental conditions: in a laboratory–dry; enclosed in a can at RH = 50%; and enclosed in a can at RH = 100%. The durability of the passivation layer of steel on non-irradiated and irradiated specimens after 8 months of exposure to gamma radiation was compared. A lower degradation effect of gamma radiation was visible in fully water-saturated specimens

corrosion of steel, relative humidity variability, carbonation condition, EIS, polarization curve

no pdf 8600
99. Kalinowski D., Konowrocki R., Szolc T., Badania symulacyjne kryteriów bezpieczeństwa przed wykolejeniem pojazdów tramwajowych o różnych konfguracjach nadwozi., PSz2023, The 25th Scientific Conference RAIL VEHICLES 2023 , 10-13.09.2023, , 2023-09-10/09-13, Polanica Zdrój (PL), pp.9-9, 2023nota 8602

Pojazdy tramwajowe charakteryzują się dużą różnorodnością w zakresie konfiguracji struktur nadwozi oraz układów biegowych. Ma to związek z ich eksploatacją w wysoko zurbanizowanych obszarach miejskich i koniecznością przystosowania do masowej obsługi podróżnych o różnych potrzebach przewozowych
(osoby o ograniczonej możliwości ruchowej, osoby na wózkach inwalidzkich, osoby z wózkami dziecięcymi). Nie bez znaczenia jest również istniejąca infrastruktura (minimalne wartości promieni łuków poziomych i pionowych, wysokości krawędzi przystankowej względem poziomu główki szyn). W stosunku do pojazdów kolejowych nie istnieją międzynarodowe regulacje dotyczące badań ruchowych, w tym w szczególności dla warunków bezpieczeństwa przed wykolejeniem. W związku z tym opracowano nową, uniwersalną metodykę badań symulacyjnych kryteriów bezpieczeństwa przed wykolejeniem pojazdów tramwajowych, bez względu na konfgurację nadwozi danego tramwaju, typu wózka czy szerokość toru. Zaprezentowano założenia nowej metodyki oraz przeprowadzono symulacje dla kilku popularnych na rynku konfguracji tramwajów. Porównano wyniki, otrzymane dla pojazdów z klasycznymi zestawami kołowymi oraz dla pojazdów wyposażonych w zestawy kołowe z niezależnie obracającymi się kołami.

Pojazdy tramwajowe, układy biegowe, symulacje, zestawy kołowe z niezależnie obracającymi się kołami

pdf 8602
100. Gąsiński T., Groll W., Konowrocki R., Migdał M., Pałyga M., Application of a fast rail vehicle vibration prediction method to monitor the condition of track infrastructure, PSz2023, The 25th Scientific Conference RAIL VEHICLES 2023 , 10-13.09.2023, , 2023-09-10/09-13, Polanica Zdrój (PL), pp.77-77, 2023nota 8603

The paper presents a simple and fast method for predicting the vibrations of a vehicle moving on a track with a given technical condition. In the proposed approach, transfer function matrix models describing the dynamics of train components caused by the interaction of the rail vehicle-track system were used to analyze. The propagation of vibrations generated from the interaction of the wheel set with the track to selected elements of the rail vehicle is approximated by frequency-dependent homogeneous relations. The developed numerical vehicle-track model was generated on the basis of recorded accelerations at selected measurement points of a real rail vehicle and from track geometric data collected by a measuring trolley at given speeds of the entire system. The developed method is based on a model of the rail vehicle system.

pdf 8603
101. Bochenek K., Węglewski W., Sequeira A., Silicon carbide or aluminium oxide as an reinforcing phase for hot-pressed AlSi-based graded composites for automotive application, THERMEC 2023, International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS Processing, Fabrication, Properties, Applications, 2023-07-02/07-07, Wiedeń (AT), No.155, pp.118, 2023nota 8605

Lightweight materials with high wear resistance, good thermal conductivity and enhanced mechanical properties are desired for modern brake discs in the automotive industry. One way to achieve this target is to use functionally graded metal-ceramic composite materials (FGMs). Besides improving the main properties, an FGM must ensure proper thermal conductivity of the system to release heat generated during brake operation and keep the residual stresses at acceptable levels.
Two ceramic materials, SiC and Al2O3, were used as the reinforcing phase of the AlSi12 matrix composites fabricated by powder metallurgy with a stepwise composition gradient (layered composites). The hot-pressing technique was employed to consolidate the powder mixtures with the volume fraction of the ceramics phase ranging from 10 to 30%. High relative density of the composite layers (above 99%) was obtained. Fracture toughness and flexural strength in a four-point bending ranged from 8.7 to 12.94 MPa√m and from 412 to 717 MPa, respectively. In-situ tensile tests under SEM allowed to analyze deformation and crack growth mechanisms on the microscale. Wear tests evidenced high wear resistance of the manufactured materials as compared with the reference material (grey cast iron). Results of the neutron diffraction experiments showed a desired effect of the FGM structure on decreasing the processing-induced residual stresses.
In parallel, FEM simulations based on the actual material microstructure reconstructed from micro-CT images were performed for thermal conductivity and thermal residual stresses to optimize the FGM structure and to answer the question which reinforcement (SiC or Al2O3) better serves the intended application.

pdf 8605
102. Kleiber M., Mężowie stanu pilnie poszukiwani, Wszystko co Najważniejsze, ISSN: 2425-0352, pp.1-2, 2023pdf 8609
103. Kleiber M., Polska dziś - na rzecz naszego dobrostanu jutro, Wszystko co Najważniejsze, ISSN: 2425-0352, Vol.57, pp.3-4, 2023no pdf 8610
104. Kleiber M., Światu potrzeba namysłu mądrości, Wszystko co Najważniejsze, ISSN: 2425-0352, Vol.53, pp.2-3, 2023pdf 8612
105. Kleiber M., Demokracja w czasach e-polityki, Wszystko co Najważniejsze, ISSN: 2425-0352, Vol.51, pp.14-15, 2023pdf 8613
106. Kleiber M., Kluczowy moment Europy, Wszystko co Najważniejsze, ISSN: 2425-0352, Vol.50, pp.10-11, 2023pdf 8614
107. Kleiber M., Trzy lata które zmieniły nasze myślenie, Wszystko co Najważniejsze, ISSN: 2425-0352, pp.1-3, 2023pdf 8615
108. Kleiber M., Tak dla wiarygodnych programów, Wszystko co Najważniejsze, ISSN: 2425-0352, Vol.49, pp.2-3, 2023no pdf 8616
109. Kukla D., Metody nieniszczące w ocenie rozwoju uszkodzenia materiałów konstrukcyjnych w warunkach obciążeń eksploatacyjnych, 50KKBN, 50. Jubileuszowa Konferencja Badań Nieniszczących, 2023-10-17/10-19, Kołobrzeg (PL), No.25, pp.112-112, 2023pdf 8618
110. Kleiber M., Zdrowie pod najwyższą ochroną, Wszystko co Najważniejsze, ISSN: 2425-0352, Vol.54, pp.15-16, 2023pdf 8619
111. Kondej A., Kukla D., Nieniszcząca ocena grubości przypowierzchniowej warstwy azotków w technicznych stopach żelaza metodą prądów wirowych, 50KKBN, 50. Jubileuszowa Konferencja Badań Nieniszczących, 2023-10-17/10-19, Kołobrzeg (PL), No.43, pp.118-118, 2023pdf 8620
112. Szolc T., Konowrocki R., Pisarski D., Model Based Identification of the Measured Vibration Multi-fault Diagnostic Signals Generated by a Large Rotating Machine, IFToMM , The 11th IFToMM International Conference on Rotordynamics - International Conference on Rotor Dynamics, 2023-09-18/09-21, Beijing, China (CN), DOI:, No.139, pp.1-13, 2023nota 8624

Large rotating machines are usually affected by more or less severe vibrations excited simultaneously by various manufacturing errors and operational defects. In order to identify the causes of these adverse effects on the basis of measured diagnostic signals registered during a regular operation, it is necessary to obtain a theoretical basis regarding possible dynamic responses of the monitored machine to its most likely failures. This paper shows how to achieve this target on the example of monitoring results of a large blower used in the mining industry. In the advanced structural hybrid model of the rotor shaft system of this blower, in addition to the impact of static unbalance, there is included simultaneous interaction of dynamic unbalance of the blower overhung rotor, parallel and angular misalignments of the shaft sections, inner anisotropy of the couplings, pressure pulsation of the working medium caused by incorrect stagger angles of the blower rotor blades, and electromagnetic pull of rotors of the driving electric motors. The contribution of the above-mentioned imperfections to the dynamic behavior of the system will be identified by means of a multi-fault model-based identification method using the harmonic excitation approach, where vibratory motions are described in the space of modal coordinates and malfunction effects are modelled by the use of equivalent external loadings. Computational examples will be devoted to demonstrating the influence of a faulty setting of the stagger angles of the blower blades on lateral vibrations of the entire rotating system with the simultaneous influence of the aforementioned imperfections.

Rotor Machine, Model-Based Multi-Fault Identification, Monitoring of Vibration Signals, Rotor-Shaft Hybrid Model with Imperfection

no pdf 8624
113. Lewandowski M.J., Rozbicki J., Smach H., Karwat P., Szczurek A., Sala J., Bera A., Modelowe rozwiązania skanerów UTPA do badań spawów dla wież wiatrowych, sekcji płaskich oraz konstrukcji wielkogabarytowych on-shore/off-shore, BADANIA NIENISZCZĄCE I DIAGNOSTYKA, ISSN: 2451-4462, Vol.1-4, pp.97-100, 2023nota 8625

W ramach realizowanego projektu wdrożeniowego (akronim: BalTECH, finansowanie NCBR POIR) opracowano modelowe stanowiska skanerów UTPA do badań nieniszczących spawów dla asortymentu produktów wytwarzanych w Baltic Operator sp. z o.o. Skanery zapewniają prowadzenie i sprzężenie dwóch głowic Phased-Array (badanie dwustronne). Do realizacji badań UTPA wykorzystano komercyjny aparat Olympus-OmniScan ™ X3, natomiast dla metody UTPA-FMC (Full-Matrix Capture) badawczą platformę ultradźwiękową us4R-lite™ firmy us4us sp. z o.o. Wykonano zestaw ok. 170 próbek testowych spawów z rożnymi niezgodnościami dla płyt w zakresie grubości 12–65 mm, które zostały przebadanie metodami VT, MT/PT, UT, RT, UTPA. Opracowana procedura badania i wzorce testowe pozwoliły na pełną walidację klasycznej metody UTPA do badania sekcji wież wiatrowych. Eksperymentalne zastosowanie i porównanie metody UTPA-FMC pokazało jej duży potencjał oraz nowe możliwości wizualizacji i oceny wad, w stosunku do klasycznej metody UTPA. Zweryfikowano także możliwość zbierania surowych danych FMC z prędkością do 100 mm/s. Kluczowe znaczenie ma wdrożenie nowoczesnych i ekonomicznych rozwiązań badań nieniszczących, które zapewnią ocenę jakości 100% długości spawu. Istotny wkład w rozwój laboratoriów badawczych, w kontekście wiarygodności uzyskiwanych wyników badania

ultradźwiękowe badania nieniszczące, spawy, Phased-Array, UTPA; FMC

no pdf 8625
114. Lewandowski M.J., Karwat P., Jarosik P., Rozbicki J., Walczak M., Smach H., A High-Speed Ultrasound Full-Matrix Capture Acquisition System for Robotic Weld Inspection, Research and Review Journal of Nondestructive Testing, ISSN: 2941-4989, DOI: 10.58286/28163, Vol.1, No.1, pp.1-6, 2023nota 8626

Phased-Array Ultrasonic Technique is traditionally used for the non-destructive inspection of welds and supported by industrial-grade inspection equipment. FullMatrix Capture (FMC) with Total Focusing Method (TFM) provide new capabilities and multimodal imaging, but available commercial scanners have limitations in acquisition speed (30–300MB/s) and reconstruction speed. Our goal was to develop a solution for FMC acquisition that can be applied to high-speed robotized weld scanning (speed of 100 mm/s with a resolution of 1 mm). For FMC acquisition, we have applied a portable programmable ultrasound research system us4R-lite™ (us4us Ltd., Poland) in a 64:256 channel configuration and standard angled 32-element Phased-Array probes. The system can acquire and store raw RF or demodulated I/Q data at a speed of 2–6 GB/s, enabling real-time FMC at high speed. Data can be stored on a PC during scanning and processed by a high-performance GPU. We have successfully tested our experimental setup while scanning flat-section welds with a motorized scanner at a speed approaching 100 mm/s. The acquisition and processing software developed uses Nvidia CUDA on GPU and can manage real-time storage and scanning. Next, we are planning to integrate the solution into an industrialgrade high-speed FMC acquisition system with embedded GPU processing

Ultrasonic Testing (UT) (4285), robotic inspection (23), PAUT (42), FMC (16), TFM (28), GPU processing

no pdf 8626
115. Nowak M., Szeptyński P., Musiał S., Maj M., Identyfikacja parametrów materiałowych na podstawie wyników metody korelacji obrazów cyfrowych, XIII Konferencja Naukowa PLASTMET 2023, 2023-11-07/11-10, Łańcut (PL), pp.10-10, 2023pdf 8630
116. Mościcki T., Theoretical and experimental studies of superhard W-Ti-B coatings deposited using the HiPIMS method, NOMATEN Winter School 2023, 2023-11-27/11-30, Świerk (PL), pp.44-44, 2023pdf 8631
117. Darban H., Basista M., Modeling size effect in miniaturized mass sensors, THERMEC 2023, International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS Processing, Fabrication, Properties, Applications, 2023-07-02/07-07, Wiedeń (AT), No.249, pp.170-170, 2023pdf 8636
118. Haghighat Bayan M.A., Pierini F., Synthesis of Conducting Polymers for High Energy Efficiency, AChHC 2023, XXIV International Symposium “Advances in the Chemistry of Heteroorganic Compounds”, 2023-11-24/11-24, Łódź (PL), No.P-038, pp.55, 2023pdf 8637
119. Haghighat Bayan M.A., Pierini F., Polyaniline and polythiophene electrodes for high-performance supercapacitors, POL-VIET 2023, 7th International Conference POL-VIET, Scientific and research cooperation between Vietnam and Poland, 2023-10-18/10-20, Kraków (PL), pp.1, 2023pdf 8638
120. Kolankowski K., Bandzerewicz A., Wrzecionek M., Dulnik J., Denis P., Gadomska-Gajadhur A., Poly(glycerol citrate) + PLLA nonwovens for possible biomedical applications, PSCM 2023, 7th International Conference on Polymer Science and Composite Materials, 2023-10-05/10-06, Rzym (IT), pp.1, 2023pdf 8639
121. Bandzerewicz A., Wierzchowski K., Denis P., Pilarek M., Gadomska-Gajadhur A., Biodegradable and bioresorbable nonwovens based on poly(1,3-propanediol citrate) for ex-vivo cell culturing, PSCM 2023, 7th International Conference on Polymer Science and Composite Materials, 2023-10-05/10-06, Rzym (IT), pp.1, 2023pdf 8640
122. Słowicka A.M., Xue N., Sznajder P., Nunes J.K., Stone H.A., Ekiel-Jeżewska M.L., Short-time dynamics of elastic filaments in a shear flow, EUROMECH Colloquium 622, EUROMECH Colloquium 622, Suspension flows and rheology: inertia, shape and roughness matter, 2023-06-26/06-30, Nice (FR), pp.465184, 2023nota 8641

Stokes equations, Euler-Bernoulli beam, elastica, elastic filament, shear flow, buckling

pdf 8641
123. Sznajder P., Liu L., Zdybel P., Ekiel-Jeżewska M.L., Buckling of elastica in a shear flow, EUROMECH Colloquium 622, EUROMECH Colloquium 622, Suspension flows and rheology: inertia, shape and roughness matter, 2023-06-26/06-30, Nice (FR), pp.465032, 2023nota 8642

Stokes equations, Euler-Bernoulli beam, elastica, elastic filament, shear flow, buckling

pdf 8642
124. Melikhov Y., Ekiel-Jeżewska M.L., Attracting modes of sedimentation for highly elastic fibers settling under gravity in a viscous fluid, Bulletin of the American Physical Society, ISSN: 0003-0503, Vol.68, pp.ZC34.00006, 2023pdf 8643
125. Zdybel P., Ekiel-Jeżewska M.L., Sedimentation of V-shaped micro-objects with mass anisotropy under gravity, Bulletin of the American Physical Society, ISSN: 0003-0503, Vol.68, pp.A34.00009, 2023pdf 8644
126. Ekiel-Jeżewska M.L., Periodic orbits of particles settling under gravity in a viscous fluid, Bulletin of the American Physical Society, ISSN: 0003-0503, Vol.68, pp.ZC46.00006, 2023pdf 8645
127. Jarząbek D.M., Jenczyk P., Włoczewski M., Microstructure and tribology of nitrided heterogenious eutectic high entropy alloys, FEMS EUROMAT 2023, 17th European Congress and Exhibition on Advanced Materials and Processes, 2023-09-03/09-07, Frankfurt n/Menem (DE), pp.1-1, 2023pdf 8646
128. Nosewicz S., Jenczyk P., Jarząbek D., Strojny-Nędza A., Kaszyca K., Kowiorski K., Bazarnik P., Pakieła Z., Romelczyk Baishya B., Chmielewski M., Multiscale investigation of microstructural and mechanical properties of spark plasma sintered Ni-SiC composites, AMT'2023, Advanced Materials and Technologies Conference, 2023-06-18/06-21, Wisła (PL), pp.1, 2023nota 8647

In the case of the sintering of composite materials exhibiting mutual solubility, intermediate phases with varying concentrations of elements may appear during the densification process. Microstructural and structural changes, especially in the area of the interface, strongly influence mechanical or thermal properties [1]. A good example of such materials is nickel – silicon carbide composites. At elevated temperatures nickel reacts with silicon carbide, which causes total SiC decomposition, and as a result, new Ni-Si phases are formed and free carbon is precipitated within the reaction zone. In this work, nickel-silicon carbide composites were obtained via the Spark Plasma Sintering method. The detailed microstructural analyses using X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the material’s evolution during sintering. To investigate the correlation between microstructure and properties of obtained materials, the mechanical test at three different length scales (in macro-, micro- and nanoscale) was conducted. To evaluate the strength of Ni-SiC composites at a macroscopic scale the uniaxial tensile and compression tests were employed. The sample deformation and failure mechanism for different stages of sintering were analyzed. The strength of the nickel-silicon carbide interface was determined by bending tests of micro-cantilever beams. Nanoindentation was used to evaluate the hardness of each composite component. The conducted research revealed a strong relation between mechanical strength and sintering conditions.

pdf 8647
129. Chmielewski M., Kaszyca K., Strojny-Nędza A., Grabias A., Romelczyk-Baishya B., Rojek J., Nosewicz S., The experimental investigations of sintering kinetics of NiAl powder, AMT'2023, Advanced Materials and Technologies Conference, 2023-06-18/06-21, Wisła (PL), pp.1, 2023pdf 8648
130. Nowak Z., Giersig M., Zastosowanie teorii lepkoplastycznego płynięcia ciał stałych wywołane pasmami ścinania do opisu nanopolimerów, XIII Konferencja Naukowa PLASTMET 2023, 2023-11-07/11-10, Łańcut (PL), pp.119-120, 2023pdf 8649
131. Klimonda Z., Karwat P., Dobruch-Sobczak K., Piotrzkowska-Wróblewska H., Litniewski J., On the assessment of local tumor response to neoadjuvant chemotherapy, IEEE IUS 2023, International Ultrasonics Symposium (IUS) , 2023-09-03/09-08, Monteral (CA), pp.1-4, 2023pdf 8650
132. Nosewicz S., Jurczak G., Chromiński W., Rojek J., Kaszyca K., Chmielewski M., Quantitative Analysis of Influence of SPS Process Parameters on the Porous Materials Structure Using Combined EBSD and Computer Assisted Software, FAST/SPS, 2nd Conference on FAST/SPS From Research to Industry, 2023-10-16/10-18, Warszawa (PL), pp.52, 2023pdf 8651
133. Cacko D., Jarosik P., Lewandowski M., Real-time Shear Wave Elastography Implementation on a Portable Research Ultrasound System with GPU-accelerated Processing, IEEE IUS 2023, International Ultrasonics Symposium (IUS) , 2023-09-03/09-08, Monteral (CA), DOI: 10.1109/IUS51837.2023.10307608 , pp.1-4, 2023nota 8652

In this work, we present a low-cost, portable, and fully configurable ultrasound system implementing 2-D real-time Shear Wave Elastography (SWE) imaging mode. To achieve that we have enhanced the transmit capabilities of the 256 TX/64 RX us4R-lite research system, developed by our team, to support push pulses generation. This system was combined with a signal processing pipeline reconstructing stiffness maps from raw RF data. Real-time imaging performance was provided by an efficient reconstruction algorithm execution that incorporated graphics processing unit (GPU). The overall system performance was assessed experimentally using an industry-standard elasticity Q/A phantom. Relevant reconstruction parameters were evaluated in terms of reconstruction time. The system achieved stiffness estimation with a bias <5% and SNR of 30 dB and was able to detect lesions of size >4 mm and various stiffness with CNR in the range of 13–17 dB. The system throughput of up to 5 fps has been achieved on a PC notebook equipped with NVIDIA RTX 3060 GPU.

pdf 8652
134. Nisar F., Rojek J., Nosewicz S., Chmielewski M., Kaszyca K., Thermo-Electric Model for FAST/SPS Sintering in Discrete Element Framework, FAST/SPS, 2nd Conference on FAST/SPS From Research to Industry, 2023-10-16/10-18, Warszawa (PL), pp.56-57, 2023pdf 8653
135. Kaczmarek A., Hoffman J., Creation of pure and homogenous carbon nanoparticles from laser-induced carbon vapors, PLATHINIUM 2023, PLASMA THIN FILM INTERNATIONAL UNION MEETING, 2023-09-11/09-15, Antibes, French Riviera (FR), No.NANO-P2-029, pp.158-158, 2023pdf 8656
136. Rojek J., Nisar F., Nosewicz S., Chmielewski M., Kaszyca K., DISCRETE ELEMENT MODELLING OF MULTIPHYSICS PHENOMENA IN POWDER SINTERING PROCESSES, COMPLAS 2023, XVII International Conference on Computational Plasticity. Fundamentals and Applications, 2023-09-05/09-07, Barcelona (ES), pp.1, 2023pdf 8657
137. Manecka-Padaż A., Nowak Z., Experimental investigation of Euler’s elastica: in-situ SEM nanowire post-buckling, WWFSI, 11th Wdzydzeanum Conference on Fluid-Solid Interaction, 2023-01-03/01-07, Wdzydze Kiszewskie (PL), pp.14-14, 2023pdf 8659
138. Rojek J., Nisar F., Nosewicz S., Chmielewski M., Kaszyca K., Coupled thermo-electrical discrete element model of electric current activated/assisted sintering, PARTICLES 2023 - The VIII International Conference on Particle-Based Methods, 2023-10-09/10-11, Milan (IT), pp.1, 2023pdf 8661
139. Nisar F., Nosewicz S., Kaszyca K., Chmielewski M., Rojek J., Discrete element simulation of heat flow in porous materials manufactured by FAST/SPS, NUMIFORM 2023, the 14th International Conference on Numerical Methods in Industrial Forming Processes, 2023-06-25/06-29, Kraków (PL), pp.1, 2023pdf 8663
140. Grigoryan N., Chudziński P., The role of electron-electron interactions in electron emission from nanotube materials, KonDokPAN 2023, 7th Conference of Doctoral Students of the PAS, 2023-10-13/10-15, Wrocław (PL), pp.1-1, 2023pdf 8666
141. Ziai Y., Petronella F., Rinoldi C., Nakielski P., De Sio L., Pierini F., An AgNPs-incorporated hydrogel-based nanocomposite for lysozyme biosensing, NANOMAT2023, 6th International Conference on Functional Nanomaterials and Nanodevices, 2023-08-27/08-30, Warsaw (PL), No.075, pp.109, 2023nota 8668

Lysozyme, an enzyme found in various bodily fluids, holds immense importance as a biomolecule with numerous diagnostic implications. In the realm of ophthalmology, lysozyme detection in tears emerges as a precious tool for identifying and addressing dry and inflamed eyes. To enhance the precision and efficiency of lysozyme detection, Smart materials, such as hydrogels and electrospun nanofibers, have been confirmed to be promising candidates for sensing platforms. Plasmonic nanoparticles, on the other hand, offer enhanced optical properties that allow for localized surface plasmon resonance (LSPR), which has been used alongside these substrates. By integrating these smart materials into biosensing platforms, researchers can achieve rapid, reliable, and non-invasive lysozyme detection from tears.
To achieve this goal, a layered platform consisting of a hydrogel layer, electrospun nanofibers, and plasmonic nanoparticles was designed and fabricated. Electrospun mat of poly (L-lactide-co-caprolactone) (PLCL) was used as the support, providing suitable mechanical properties to the platform. Silver nanoplates were immobilized on top of the electrospun nanofibers, where a layer of poly(N-isopropylacrylamide)-based hydrogel was added. With its porous 3D structure and high water content, the hydrogel network allows enhancement in photothermal responsivity. Moreover, due to its fluid nature, the maneuvering of the biomolecules is much easier, making the biosensing procedure more accurate. The structure of each layer, their cross-section, and the whole platform were investigated chemically, morphologically, and optically. The fast photothermal responsitivity of the platform and sensing features were studied, revealing the applicability of the system as a biosensor for detecting lysozyme.

no pdf 8668
142. Cegielska O., Sajkiewicz P., Sierakowski M., Mucoadhesion and biological evaluation of brinzolamide-loaded electrospun nanofibers – in vitro and ex vivo assessment, FEMS EUROMAT 2023, 17th European Congress and Exhibition on Advanced Materials and Processes, 2023-09-03/09-07, Frankfurt n/Menem (DE), pp.1, 2023pdf 8670
143. Kiełczyński P., Wieja K., Balcerzak A., New Ultrasonic Torsional Waves for Sensing Applications, IEEE IUS 2023, International Ultrasonics Symposium (IUS) , 2023-09-03/09-08, Monteral (CA), DOI: DOI: 10.1109/IUS51837.2023.10307244, pp.1-4, 2023nota 8671

In this paper (inspired by a newly developed class of
materials, i.e., elastic metamaterials) we will show that torsional
surface elastic waves can propagate on the surface of a
metamaterial elastic rod embedded in a conventional elastic space.
In this work, we assume that the elastic compliance  of a
metamaterial cylindrical rod varies with frequency  according
to Drude model. The proposed torsional ultrasonic surface waves
can be considered as an elastic analogue of Surface Plasmon
Polariton (SPP) electromagnetic waves propagating on the surface
of a metallic rod embedded in dielectric space. An analytical
expression for the dispersion equation the new torsional elastic
surface wave was developed. The newly discovered torsional
elastic surface wave inherits many of fascinating properties of
electromagnetic counterpart such as: strong subwavelength
concentration of the wave field in the vicinity of the cylindrical
surface, low phase and group velocity etc. Therefore, the proposed
new torsional ultrasonic surface waves can be used in: a) near-field
subwavelength acoustic imaging (superresolution), b)
amplification of the evanescent waves

Torsional surface acoustic waves, Surface Plasmon Polaritons (SPP) electromagnetic waves, Dispersion equation, Phase velocity, Group velocity

pdf 8671
144. Pawłowski P., Orłowska-Gałęzia A., Graczykowski C., Mieloszyk M., Embedded FBG Sensors in Additively Manufactured Polylactide Composites Reinforced with Continuous Fibers, COMPOSITES 2023, 9th ECCOMAS Thematic Conference on the Mechanical Response of Composites: COMPOSITES 2023, 2023-09-12/09-14, Trapani (IT), pp.1-1, 2023nota 8675

Additive Manufacturing is one of the most rapidly developing production technologies in the last decade. In case of polymeric materials the Fused Deposition Modelling (FDM) provides low cost and high versatility, however is limited by low accuracy and mechanical properties of applied polymeric materials. One of the ways of overcoming the latter deficiency is the modification of the FDM process allowing for the reinforcement of the printed composites with continuous fibres. The objective of the research is to present the performance of additively manufactured Carbon Fibre Reinforced Polymer (CFRP) sample with embedded Fiber Bragg Grating sensors (FBG) under the influence of mechanical loading and temperature changes. FBG sensors were introduced to the middle of the specimen during manufacturing process. Experimental results show high nonlinearity due to a relatively low glass transition temperature of the PLA material. Additionally, the numerical modelling using the Finite Element Method provides more complex insight into the influence of embedded fibre optic on the AM composite material.

pdf 8675
145. Grigoryan N., Chudziński P., Generalizing Field Emission Theory for Surfaces with Strong Electron-Electron Interactions, 2nd International Virtual Conference on Materials Science and Engineering, 2023-11-11/11-12, Londyn (GB), pp.1-1, 2023pdf 8677
146. Liu J., Malinowski P.H., Pawłowski P., Wu Z., Todd M.D., Damage Assessment with Laser Ultrasonics in 3D-Printed Plate, MAC-XLI , 41st IMAC, A Conference and Exposition on Structural Dynamics 2023, 2023-02-13/02-16, Austin (US), DOI: 10.1007/978-3-031-37007-6_6, pp.51-55, 2023nota 8678

The growing use of 3D-printed (additively manufactured) structural components implies the need to develop effective methods of damage assessment. This study focuses on guided wave propagation and its interaction with structural damage. The waves were excited using a laser scanning system which allows for easy excitation of the waves at various points at the surface. Also, the excitation is broadband, giving the ability to excite more guided wave modes at once. The combined laser scanning with a single piezoelectric measurement transducer takes advantage of reciprocity to reconstruct the full propagating wavefield. The investigated sample was printed from an aluminum alloy. The first set of measurements was realized for an intact (healthy) sample. Next, an artificial damage was introduced in order to study the wave interaction with it. Machine learning-based signal process algorithms were developed to analyze the wave interaction with the damaged plate. The obtained results show a good potential of guided wave-based techniques for the structural health monitoring of 3D-printed structures. © 2024, The Society for Experimental Mechanics, Inc.

3D printing; Guided waves; k-means clustering; Laser ultrasonics; Nondestructive evaluation; Principal component analysis

no pdf 8678
147. Byra M., Klimonda Z., Litniewski J., Pre-training with Simulated Ultrasound Images for Breast Mass Segmentation and Classification, LECTURE NOTES IN COMPUTER SCIENCE, ISSN: 0302-9743, DOI: 10.1007/978-3-031-44992-5_4, Vol.14314, pp.34-45, 2023nota 8681

We investigate the usefulness of formula-driven supervised learning (FDSL) for breast ultrasound (US) image analysis. Medical data are usually too scarce to develop a better performing deep learning model from scratch. Transfer learning with networks pre-trained on ImageNet is commonly applied to address this problem. FDSL techniques have been recently investigated as an alternative solution to ImageNet based approaches. In the FDSL setting, networks for transfer learning applications are developed using large amounts of synthetic images generated with mathematical formulas, possibly taking into account the characteristics of the target data. In this work, we use Field II to develop a large synthetic dataset of 100 000 US images presenting different contour objects, as shape features play an important role in breast mass characterization in US. Synthetic data are utilized to pre-train the ResNet50 classification model and various variants of the U-Net segmentation network. Next, the pre-trained models are fine-tuned on breast mass US images. Our results demonstrate that the proposed FDSL approach can provide good performance with respect to breast mass classification and segmentation.

breast cancer, deep learning, synthetic data, ultrasound

no pdf 8681
148. Rybak D., Rinoldi C., Nakielski P., Pierini F., Stimuli-responsive 3D printed hydrogel composite with drug-releasing short-filaments for infected wound healing, ESB 2023, 33st Conference of the European Society for Biomaterials, 2023-09-04/09-08, Davos (CH), No.S4.5-O4, pp.-, 2023nota 8682

Developing an efficient wound dressing has gained significant attention in the biomedical field, as infected wounds can cause severe complications that negatively impact human health. Creating an optimal environment for wound healing and tissue remodeling is crucial. Hydrogel dressings have become increasingly popular for skin repair due to their oxygen permeability, ability to absorb wound exudate, and moisture retention properties1. Additionally, electrospun materials offer unique properties such as biodegradability and the ability to control drug release, which makes them potential candidates for treating infected wounds2. Electrospinning is a simple method for producing ultrafine fibers that range from nano- to micrometers in diameter. Fibers can be used as drug delivery systems, allowing for controlled and on-demand drug release with the addition of stimuli-responsive particles. The main aim of this study was to develop a multi-functional 3D-printed hydrogel composite for infected wound healing. Ketoprofen-loaded poly(lactic-co-glycolic acid) (PLGA) mat incorporated with gold nanorods (AuNRs) was structured to the short filaments (SFs) using the aminolysis method (Fig. 1A). SFs were loaded into 3d printing ink composed of gelatine-methacrylate (GelMA) and alginate sodium (AS) (Fig. 1B). Introducing photo-responsive AuNRs in SFs significantly accelerated the ketoprofen release under near-infrared (NIR) light exposure. The ketoprofen release of the activated platform by NIR light, compared to the non-irradiated system, exhibited a significant elevation of the drug release resulting from the response to the stimuli (Fig. 1C). The composite dressing also showed excellent photo-thermal performance and good mechanical properties. The stability of the print before and after NIR irradiation was also investigated. Moreover, 3D-printed hydrogel demonstrated antibacterial activity under the NIR laser due to the photo-thermal activity, leading to E. coli eradication after multiple times of exposure. Evaluated tests and achieved results paved the way toward further composite’s ex vivo and in vivo application in the field of infected wounds.

no pdf 8682
149. Rinoldi C., Haghighat Bayan M.A., Rybak D., Nakielski P., Pierini F., Biocompatible photothermal-responsive plasmonic nanocomposites for near infrared-activated bacterial eradication, ESB 2023, 33st Conference of the European Society for Biomaterials, 2023-09-04/09-08, Davos (CH), No.S6.4-O2, pp.-, 2023nota 8683

In recent years, novel strategies and approaches to develop antimicrobial biomaterials have attracted increasing attention, targeting multi-functional systems to eliminate bacteria from membranes, surfaces, medical devices, infected sites, contact lenses, etc. More specifically, eradicating bacteria (both resident and exogenous) at the wound site is crucial to guarantee fast and effective wound healing without complications, while sterilization of personal protective equipment (e.g., face masks) makes it possible the safe re-use.[1,2] In this frame, photothermal therapy holds great potential since it can kill pathogenic bacteria with minimal invasiveness.[3]

In this study, plasmonic nanoparticles have been combined with biopolymers to provide the system with bactericide functions. More in detail, plasmonic gold nanorods (AuNRs) are encapsulated into electrospun matrices made of poly(lactic-co-glycolic acid) or polyacrylonitrile by loading into the polymeric solution prior to electrospinning or spraying on the already spun material to obtain the final composites (Figure 1A). The photo-thermal properties of the incorporated AuNRs are exploited to activate the near infrared (NIR)-mediated temperature response upon exposure to NIR light. By reaching a temperature > 55°C, the eradication of 99.5% of bacteria is achieved (Figure 1B), while the stability of the composite materials is maintained. Additionally, in vitro biocompatibility tests performed by culturing fibroblast cells onto the proposed systems show suitable biological properties with no toxic or inflammatory reactions. Taking into account the results, the biocompatible photothermal-responsive nanocomposites reveal their potential in photothermal therapy as a wound dressing and face mask coating.

no pdf 8683
150. Broniszewska P., Pawłowski P., Plasma Electrolytic Oxidation of additively manufactured AlSi10Mg alloy, PLATHINIUM 2023, PLASMA THIN FILM INTERNATIONAL UNION MEETING, 2023-09-11/09-15, Antibes, French Riviera (FR), pp.184-184, 2023nota 8685

Plasma Electrolytic Oxidation (PEO) is the most advanced of the anodizing methods. In comparison to traditional anodizing PEO provides coatings with higher wear- and corrosion- resistance and hardness. Moreover, PEO is carried out in an alkalic bath, instead of strong acids, which makes this method more environmentally friendly. PEO is an excellent surface treatment for light metals, like magnesium or aluminium. More often light metals are produced by additive technologies (3d printing). The microstructure of additively manufactured alloys strongly differs from casting alloys. Characteristic melting pools are observed. AlSi10Mg alloy presents eutectic structure surrounded by Si-net. The microstructure is strongly connected to laser paths. Fine-grain microstructure results in higher strength than cast alloy. In this study, traditional anodizing, hard anodizing (HA) and PEO were carried out on AlSi10Mg manufactured by Direct Metal Laser Sintering (DMLS). Moreover, PEO was also performed on cast AlSi10Mg alloy. Thin, conversion coatings were obtained (thickness under 10 μm). A microstructure of oxide coatings was observed. Scratch resistance was tested and allowed to describe the films' adhesion. PEO coatings are vastly porous and include more SiO2 oxides than traditional and HA coatings. SiO2 oxides are more difficult to obtain as silicon has higher resistance than aluminium. Moreover, PEO guarantees more phase-mixed surface microstructure, including amorphous, ceramic phases, which cannot be formed in low-voltage processes. In comparison to traditional and HA oxide coatings, PEO coatings exhibit better adhesion and scratch resistance. Traditional anodizing and hard anodizing on additively manufactured AlSi10Mg provide the critical load LC1 at which coating begins to be broken of 8.5N and 10N respectively. A similar LC1 value can be obtained for PEO performed on cast alloy (7.8N), while in the case of additively manufactured AlSi10Mg this LC1 is increased four times to 42.1N.

Additive manufacturing, Plasma Electrolytic Oxidation, Aluminium alloys AlSi10Mg

pdf 8685
151. Nowak Z., Giersig M., The epoxy resin nanocomposite: Effect of micro-shear bands on mechanical behaviour, WWFSI, 11th Wdzydzeanum Conference on Fluid-Solid Interaction, 2023-09-03/09-07, Wdzydze Kiszewskie (PL), pp.19-19, 2023pdf 8687
152. Byra M., Poon Ch., Shimogori T., Skibbe H., Implicit Neural Representations for Joint Decomposition and Registration of Gene Expression Images in the Marmoset Brain, MICCAI 2023, Medical Image Computing and Computer-Assisted Intervention, 2023-10-08/10-12, Vancouver (CA), pp.1, 2023nota 8689

We propose a novel image registration method based on implicit neural representations that addresses the challenging problem of registering a pair of brain images with similar anatomical structures, but where one image contains additional features or artifacts that are not present in the other image. To demonstrate its effectiveness, we use 2D microscopy in situ hybridization gene expression images of the marmoset brain. Accurately quantifying gene expression requires image registration to a brain template, which is difficult due to the diversity of patterns causing variations in visible anatomical brain structures. Our approach uses implicit networks in combination with an image exclusion loss to jointly perform the registration and decompose the image into a support and residual image. The support image aligns well with the template, while the residual image captures individual image characteristics that diverge from the template. In experiments, our method provided excellent results and outperformed other registration techniques.

brain, deep learning, gene expression, implicit neural representations, registration

no pdf 8689
153. Zielinski T.G., Opiela K.C., Dauchez N., Boutin T., Galland M.-.A., Attenborough K., Low frequency absorption by 3D printed materials having highly tortuous labyrinthine slits in impermeable or microporous skeletons, 10th Convention of the European Acoustics Association - Forum Acusticum 2023, 2023-09-11/09-15, Torino (IT), DOI: 10.61782/fa.2023.0342, pp.2275-2282, 2023nota 8690

The low frequency peaks in the absorption spectra of layers of conventional porous materials correspond to quarter wavelength resonances and the peak frequencies are determined essentially by layer thickness. If the layer cannot be made thicker, the frequency of the peak can be lowered by increasing the tortuosity of the material. Modern additive manufacturing technologies enable exploration of pore network designs that have high tortuosity. This paper reports analytical models for pore structures consisting of geometrically complex labyrinthine networks of narrow slits resembling Greek meander patterns. These networks offer extremely high tortuosity in a non-porous solid skeleton. However, additional enhancement of the low frequency performance results from exploiting the dual porosity pressure diffusion effect by making the skeleton microporous with a significantly lower permeability than the tortuous network of slits. Analytical predictions are in good agreement with measurements made on two samples with the same tortuous slit pattern, but one has an impermeable skeleton 3D printed from a photopolymer resin and the other has a microporous skeleton 3D printed from a gypsum powder.

sound absorption, high tortuosity, dual porosity, 3D printed materials

pdf 8690
154. Opiela K.C., Zielinski T.G., Modifiable labyrinthine microstructure for adjustable sound absorption and insulation, 10th Convention of the European Acoustics Association - Forum Acusticum 2023, 2023-09-11/09-15, Torino (IT), DOI: 10.61782/fa.2023.0866, pp.2937-2942, 2023nota 8691

Materials with open porosity are known to absorb sound very well. However, their efficiency in acoustic absorption and insulation is sometimes restricted to specific frequency ranges. It is possible to circumvent this drawback by designing a porous microstructure that can be modified on the fly and thereby enabling the change in its crucial geometrical parameters like tortuosity that influence the intensity of viscous energy dissipation phenomena taking place on a micro scale. A prototype of such a material consisting of relocatable small steel balls embedded in a periodic rigid skeleton is devised and additively manufactured in separate pieces in the stereolithography technology. The balls are inserted into proper places manually. The full sample is then assembled and its acoustic characteristics are determined computationally and experimentally using dual-scale, unit-cell analyses and impedance tube measurements, respectively. The resulting material is shown to possess two extreme spectra of normal incidence sound absorption coefficient and transmission loss that are dependent on the particular position of balls inside the microstructure. In consequence, acoustic waves from a much larger frequency range can be effectively absorbed or insulated by a relatively thin material layer compared to a similar design without movable balls.

sound absorption, sound transmission, modifiable porous microstructure, additive manufacturing

pdf 8691
155. Zawidzki M., Ario I., Extremely Modular Truss-Z Pedestrian Ramp, The 5th National Convention of the Japan Society of Civil Engineers, 2023-09-14/09-15, Hiroshima (JP), pp.1-2, 2023pdf 8695
156. Zawidzka E., Chikahiro Y., Ario I., Extremely Modular Arm-Z manipulator, The 5th National Convention of the Japan Society of Civil Engineers, 2023-09-14/09-15, Hiroshima (JP), pp.1-2, 2023pdf 8696
157. Zawidzki M., Cader M., Robotized Deployment of Truss-Z Modular Bridge, The 21th Symposium on Construction Robotics in Japan, 2023-09-05/09-07, Hokkaido (JP), pp.1, 2023pdf 8697
158. Zawidzka E., Zawidzki M., Extremely Modular Hyperredundant Arm-Z for Emergency, The 21th Symposium on Construction Robotics in Japan, 2023-09-05/09-07, Hokkaido (JP), pp.1, 2023pdf 8698

W wyniku doświadczeń zebranych w trakcie serwisowania silników wysokoprężnych diagności dokonali zestawienia procentowego udziału najczęstszych przyczyn awarii tych maszyn. Należą do nich awarie: układu paliwowego, sterowania, układu tłokowo-korbowego. Przewaga awarii układu paliwowego wynika z faktu, że poprawne działanie tego układu zależy od stanu bardzo precyzyjnych elementów działających w warunkach występowania wysokiego ciśnienia i znacznych przyspieszeń typu impulsowego, przy czym niewielkie uszkodzenia mechaniczne tych elementów, wpływ wysokiej temperatury i osadzanie się cząstek niespalonego węgla (nagaru) wywołują niekorzystny wzrost lub zmniejszenie się dawki wtryskiwanego paliwa. Najczęstszym uszkodzeniem układu wtryskowego zasobnikowego, to jest pracującego w układzie Common Rail (C-R). jest awaria zaworu sterującego dawką paliwa we wtryskiwaczu, powodująca jego nadmierny wypływ do kanału przelewowego i spadek ciśnienia w zasobniku. Nie stwierdzono, aby przyczyną tego uszkodzenia było naturalne zużycie elementu, ponieważ wykrywano awarie zarówno po kilkudziesięciu jak po kilkuset godzinach eksploatacji silnika. W związku z tym opracowano procedury diagnostyczne mającą na celu identyfikację niesprawnego wtryskiwacza. Niektóre z procedur wymagają umieszczenia wtryskiwacza w zewnętrznym urządzeniu diagnostycznym, a inne można stosować w trakcie jego pracy na działającym silniku

pdf 8699
160. Poon Ch., Rachmadi M.F., Byra M., Schlachter M., Xu B., Shimogori T., Skibbe H., AN AUTOMATED PIPELINE TO CREATE AN ATLAS OF IN SITU HYBRIDIZATION GENE EXPRESSION DATA IN THE ADULT MARMOSET BRAIN, ISBI, 2023 IEEE 20th International Symposium on Biomedical Imaging, 2023-04-18/04-21, Cartagena (CO), DOI: 10.1109/ISBI53787.2023.10230544, pp.1-5, 2023nota 8700

We present the first automated pipeline to create an atlas of in
situ hybridization gene expression in the adult marmoset brain
in the same stereotaxic space. The pipeline consists of seg-
mentation of gene expression from microscopy images and
registration of images to a standard space. Automation of this
pipeline is necessary to analyze the large volume of data in
the genome-wide whole-brain dataset, and to process images
that have varying intensity profiles and expression patterns
with minimal human bias. To reduce the number of labelled
images required for training, we develop a semi-supervised
segmentation model. We further develop an iterative algo-
rithm to register images to a standard space, enabling com-
parative analysis between genes and concurrent visualization
with other datasets, thereby facilitating a more holistic under-
standing of primate brain structure and function.

contrastive learning, gene atlas, segmen-tation, semi-supervised learning, registration

no pdf 8700
161. Kiełczyński P., Wieja K., Balcerzak A., New Ultrasonic Torsional Waves for Sensing Applications, IEEE IUS 2023, International Ultrasonics Symposium (IUS) , 2023-09-03/09-08, Montreal (CA), pp.1-1, 2023nota 8701

Background, Motivation and Objective
Your text explaining what has been done previously and why this work is of importance.
We are currently witnessing a fascinating development of the theory of surface and bulk acoustic waves. New extraordinary properties in the domain of acoustic waves appeared with the invention of new materials, e.g., metamaterials. The use of elastic metamaterials for the construction of ultrasonic waveguides has created a fertile ground for the discovery of a series of new ultrasonic waves. In this paper, the author applied metamaterials to develop new cylindrical liquid viscosity sensors.
Classical ultrasonic cylindrical liquid viscosity sensors are made of conventional elastic materials. These sensors are usually used to determine the viscosity of liquids in biosensors and chemosensors. However, sensors of this type are not free from disadvantages. Namely, the ultrasonic field of this classical torsional wave is distributed in a large volume of the waveguide, which results in a moderate mass sensitivity of the cylindrical sensor. Therefore, the need to solve this problem arose. The aim of the author's work was to overcome this drawbacks. To solve this problem, the author used the extraordinary properties of elastic metamaterials. The waveguide proposed by the author consists of a metamaterial core immersed in a three-dimensional (3D) elastic external medium (see figure below). The mechanical susceptibility of the metamaterial cylindrical core can take negative and positive values. In this work, the author presented the theory of a new torsional ultrasonic wave propagating in metamaterial cylindrical waveguide structures. The new discovered cylindrical surface waves have only one axial mechanical displacement component (see figure below). The key property of the newly discovered torsional ultrasonic waves is that their mechanical displacement is concentrated close to the surface of the cylinder, which greatly increases the mass sensitivity of the sensor.
Statement of Contribution/Methods
Description of equipment, methods used.
Using the equations of motion (written in a cylindrical coordinate system), constitutive equations and the appropriate boundary conditions on the cylinder surface, we developed analytical formulas for the dispersion relation of the wave, phase and group velocities and the distribution of the mechanical displacement of the torsional wave as a function of the radius r.
Presentation of the results obtained and discussion of the results.
Phase and group velocity dispersion curves and the distribution of the mechanical displacement of the new torsional waves as a function of the radius r was determined. A very high concentration of energy was found near the surface of the cylinder for r=a which results in a large mass sensitivity of the new torsional waves. These new ultrasonic torsional waves have several times higher mass sensitivity than the conventional torsional bulk waves. It is worth noting that there is an electromagnetic (optical) analogue of the new ultrasonic torsional wave. The coefficient of mass sensitivity S_σ^v was evaluated numerically for torsional surface waves propagating in cylindrical waveguides composed of a PMMA metamaterial core embedded in ST-Quartz surrounding space, in the frequency range from 10 KHz to 10 MHz. The radius of the inner PMMA core was 0.5 1.0 and 2.0 millimeters, respectively. Conse-quently, the result presented in this work can be employed in design and optimization of torsional wave biosensors.

Torsional surface acoustic waves, Surface Plasmon Polaritons (SPP) electromagnetic waves, Dispersion equation, Phase velocity, Group velocity

pdf 8701
162. Kiełczyński P., Balcerzak A., Wieja K., Ptasznik S., APPLICATION OF ULTRASONIC WAVES FOR INVESTIGATION THE PROPERTIES OF FOOD PRODUCTS, XXIX Międzynarodowa Konferencja Naukowa POSTĘPY W TECHNOLOGII TŁUSZCZÓW ROŚLINNYCH, 2023-06-15/06-16, Raszyn-Falenty (PL), pp.1-1, 2023nota 8703

Podstawowym celem tej pracy jest przedstawienie możliwości zastosowania fal ultradźwiękowych do badania właściwości produktów spożywczych. Omówione zostaną rodzaje fal ultradźwiękowych (podłużne oraz poprzeczne) oraz ich rozchodzenie się w ciekłych oraz stałych produktach spożywczych (tj. w olejach oraz produktach mięsnych). Przedstawione będą nowe niespotykane właściwości fal ultradźwiękowych, które rozchodzą się w ciałach stałych oraz cieczach.
Na podstawie zmierzonych izoterm prędkości stwierdzono występowanie wysokociśnieniowych przemian fazowych w olejach roślinnych. Wyznaczenie pod wysokim ciśnieniem (do 600 MPa) parametrów fizykochemicznych olei roślinnych (czyli np. modułu objętościowego oraz napięcia powierzchniowego) oraz wykrycie oraz zbadanie wysokociśnieniowych przemian fazowych w olejach roślinnych jest nowością.
Z drugiej strony, identyfikacja różnych rodzajów mięsa metodami ultradźwiękowymi (tj. stosując pomiary prędkości fal ultradźwiękowych) jest także nowością i pozwala w sposób relatywnie prosty identyfikować różne rodzaje mięsa, tj. mięso oddzielone ręcznie od mięsa otrzymanego mechanicznie (MOM) czyli MOM niskociśnieniowy oraz MOM wysokociśnieniowy od mięsa wykrawanego ręcznie.
Badania przeprowadzone zostały przy współpracy autorów z Instytutu Podstawowych Problemów Techniki PAN oraz Instytutu Biotechnologii Przemysłu Rolno Spożywczego w Warszawie.

Podłużne fale ultradźwiękowe, Prędkosć fazowa, Prędkość grupowa, Produkty spożywcze

pdf 8703
163. Zawidzki M., Ario I., The 5th National Convention of the Japan Society of Civil Engineers, JSCE 2023, JSCE Japan Society of Civil Engineers 2023 Annual Meeting, 2023-09-14/09-15, Hiroshima (JP), pp.1-3, 2023pdf 8704
164. Zawidzka E., Chikahiro Y., Ario I., Extremely Modular Arm-Z manipulator, The 5th National Convention of the Japan Society of Civil Engineers, 2023-09-14/09-15, Hiroshima (JP), pp.1-3, 2023pdf 8706
165. Poński M., Pokorska-Służalec I., Burczyński T., Multiscale Modeling of Concrete with Nano-Ingredients, COMPLAS 2023, XVII International Conference on Computational Plasticity. Fundamentals and Applications, 2023-09-05/09-07, Barcelona (ES), pp.1, 2023pdf 8713
166. Burczyński T., Instytuty PAN na mapie nauki w Polsce, Forum Akademickie, ISSN: 1233-0930, Vol.7-8, pp.20-21, 2023no pdf 8716
167. Cheru Fekadu M., Bedasa Abdisa G., Fedlu Kedir S., Birhanu Bayissa G., Nwaji N., Lemma Teshome T., Jaebeom L., Ni-Based Ultrathin Nanostructures for Overall Electrochemical Water Splitting, Material Chemistry Frontiers, ISSN: 2052-1537, DOI: 10.1039/D2QM00964A, Vol.7, pp.Material Chemistry Frontiers-194-215, 2023nota 8746

Hydrogen produced by electrochemical water splitting is considered to be a sustainable fuel source, an
ideal way to solve the energy problem and its environmental challenges. However, industrial production
of hydrogen from water splitting is mainly hindered by sluggish kinetics of the oxygen evolution reaction
(OER) at the anode and the hydrogen evolution reaction (HER) at the cathode in an alkaline solution due
to the difficulty in forming binding protons. Thus, the construction of a highly active and cost-effective
catalyst with abundant oxygen vacancies is critical for enhancing the reaction efficiency and decreasing
the required overpotential. Due to earth-abundance and electrocatalytic activities, Ni-based ultrathin
nanostructures (Ni-utNSs) have attracted immense attention for overall water splitting. Herein, we have
presented a complete summary of recent advancements in Ni-utNSs for overall electrochemical water
splitting. After discussing unique advances in Ni-utNSs, we discussed their properties and crystal
structures. The HER, OER, and oxygen reduction reaction (ORR) mechanisms were briefly discussed. We
also discussed several Ni-utNS manufacturing techniques, as well as in situ and ex situ characterization
and computer modeling. Furthermore, the electrochemical water splitting of Ni-utNSs is addressed. This
review can help readers understand the recent progress of Ni-utNS catalysts and gain insight into the
rational design of Ni-utNS catalysts with high electrocatalytic activity.

no pdf 8746
168. Orłowska-Gałęzia A., Graczykowski C., Pawłowski P., Analytical and numerical modelling of thermo-mechanical behaviour of additively manufactured Continuous Carbon Fibre Reinforced Polylactide (CCFRP), ICNSC2023, INTERNATIONAL CONFERENCE ON NONLINEAR SCIENCE AND COMPLEXITY, 2023-06-10/06-15, Stambuł (TR), pp.1-1, 2023pdf 8791

Category A Plus


logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15

Find Us

© Institute of Fundamental Technological Research Polish Academy of Sciences 2024