Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Pracownicy

dr hab. Alexander Streltsov

Zakład Informatyki i Nauk Obliczeniowych (ZIiNO)
stanowisko: profesor instytutu
telefon: (+48) 22 826 12 81 wewn.: 144
pokój: 418
e-mail:
Promotor prac doktorskich
1.  2024-02-19 Tulja Varun Kondra
(Uniwersytet Warszawski)
Transformacje stanów w teorii zasobów kwantowych 

Ostatnie publikacje
1.  Kondra T., Ray G., Streltsov A., Coherence Manipulation in Asymmetry and Thermodynamics, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.132.200201, Vol.132, pp.200201-1-200201-6, 2024

Streszczenie:
In the classical regime, thermodynamic state transformations are governed by the free energy. This is also called as the second law of thermodynamics. Previous works showed that, access to a catalytic system allows us to restore the second law in the quantum regime when we ignore coherence. However, in the quantum regime, coherence and free energy are two independent resources. Therefore, coherence places additional nontrivial restrictions on the state transformations that remain elusive. In order to close this gap, we isolate and study the nature of coherence, i.e., we assume access to a source of free energy. We show that allowing catalysis along with a source of free energy allows us to amplify any quantum coherence present in the quantum state arbitrarily. Additionally, any correlations between the system and the catalyst can be suppressed arbitrarily. Therefore, our results provide a key step in formulating a fully general law of quantum thermodynamics.

Afiliacje autorów:
Kondra T. - inna afiliacja
Ray G. - inna afiliacja
Streltsov A. - IPPT PAN
200p.
2.  Chandan D., Tulja Varun K., Miller M., Streltsov A., Entanglement catalysis for quantum states and noisy channels, Quantum 8, ISSN: 2521-327X, DOI: 10.22331/q-2024-03-20-1290, Vol.8, pp.1-20, 2024

Streszczenie:
Many applications of the emerging quantum technologies, such as quantum teleportation and quantum key distribution, require singlets, maximally entangled states of two quantum bits. It is thus of utmost importance to develop optimal procedures for establishing singlets between remote parties. As has been shown very recently, singlets can be obtained from other quantum states by using a quantum catalyst, an entangled quantum system which is not changed in the procedure. In this work we take this idea further, investigating properties of entanglement catalysis and its role for quantum communication. For transformations between bipartite pure states, we prove the existence of a universal catalyst, which can enable all possible transformations in this setup. We demonstrate the advantage of catalysis in asymptotic settings, going beyond the typical assumption of independent and identically distributed systems. We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel when assisted by entangled catalysts. For various types of quantum channels our results lead to optimal protocols, allowing to establish the maximal number of singlets with a single use of the channel.

Afiliacje autorów:
Chandan D. - inna afiliacja
Tulja Varun K. - inna afiliacja
Miller M. - inna afiliacja
Streltsov A. - IPPT PAN
140p.
3.  Naseri M., Macchiavello C., Bruß D., Horodecki P., Streltsov A., Quantum speed limits for change of basis, NEW JOURNAL OF PHYSICS, ISSN: 1367-2630, DOI: 10.1088/1367-2630/ad25a5, Vol.26, pp.023052-023052, 2024140p.
4.  Ludovico L., Regula B., Streltsov A., No-go theorem for entanglement distillation using catalysis, Physical Review A, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.109.L050401, Vol.109, pp.L050401-1-L050401-6, 2024

Streszczenie:
The use of ancillary quantum systems known as catalysts is known to be able to enhance the capabilities of entanglement transformations under local operations and classical communication. However, the limits of these advantages have not been determined and in particular it is not known if such assistance can overcome the known restrictions on asymptotic transformation rates—notably the existence of bound entangled (undistillable) states. Here we establish a general limitation on entanglement catalysis: we show that catalytic transformations can never allow for the distillation of entanglement from a bound entangled state with positive partial transpose, even if the catalyst may become correlated with the system of interest and even under permissive choices of free operations. This precludes the possibility that catalysis may make entanglement theory asymptotically reversible. Our methods are based on asymptotic bounds for the distillable entanglement and entanglement cost assisted by correlated catalysts.

Afiliacje autorów:
Ludovico L. - inna afiliacja
Regula B. - inna afiliacja
Streltsov A. - IPPT PAN
100p.
5.  Halder S., Streltsov A., Banik M., Identifying the value of a random variable unambiguously: Quantum versus classical approaches , Physical Review A, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.109.052608, Vol.109, pp.052608-1-052608-11, 2024

Streszczenie:
Quantum resources may provide an advantage over their classical counterparts. Theoretically, in certain tasks, this advantage can be very high. In this work, we construct such a task based on a game, mediated by the Referee and played between Alice and Bob. The Referee sends Alice a value of a random variable. At the same time, the Referee also sends Bob some partial information regarding that value. Here partial information can be defined in the following way. Bob gets the information of a random set that must contain the value of the variable, which is sent to Alice by the Referee, along with other value(s). Alice is not allowed to know what information is sent to Bob by the Referee. Again, Bob does not know which value of the random variable is sent to Alice. Now, the game can be won if and only if Bob can unambiguously identify the value of the variable that is sent to Alice, with some nonzero probability, no matter what information Bob receives or which value is sent to Alice. However, to help Bob, Alice sends some limited amount of information to him, based on any strategy that is fixed by Alice and Bob before the game begins. We show that if Alice sends a limited amount of classical information, then the game cannot be won, while the quantum analog of the “limited amount of classical information” is sufficient for winning the game. Thus, it establishes a quantum advantage. We further analyze several variants of the game and provide certain bounds on the success probabilities. Moreover, we establish connections between the trine ensemble, mutually unbiased bases, and the encoding-decoding strategies of those variants. We also discuss the role of quantum coherence in the present context.

Afiliacje autorów:
Halder S. - inna afiliacja
Streltsov A. - IPPT PAN
Banik M. - inna afiliacja
100p.
6.  Miller M., Scalici M., Fellous-Asiani M., Streltsov A., Power of noisy quantum states and the advantage of resource dilution, Physical Review A, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.109.022404, Vol.109, pp.022404-1-022404-13, 2024

Streszczenie:
Entanglement distillation allows to convert noisy quantum states into singlets, which can, in turn, be used for various quantum technological tasks, such as quantum teleportation and quantum key distribution. Entanglement dilution is the inverse process: singlets are converted into quantum states with less entanglement. While the usefulness of distillation is apparent, practical applications of entanglement dilution are less obvious. Here, we show that entanglement dilution can increase the resilience of shared quantum states to local noise. The increased resilience is observed even if diluting singlets into states with arbitrarily little entanglement. We extend our analysis to other quantum resource theories, such as quantum coherence, quantum thermodynamics, and purity. For these resource theories, we demonstrate that diluting pure quantum states into noisy ones can be advantageous for protecting the system from noise. Our results demonstrate the usefulness of quantum resource dilution, and provide a rare example for an advantage of noisy quantum states over pure states in quantum information processing.

Afiliacje autorów:
Miller M. - inna afiliacja
Scalici M. - inna afiliacja
Fellous-Asiani M. - inna afiliacja
Streltsov A. - IPPT PAN
100p.
7.  Miller M., Scalici M., Fellous-Asiani M., Streltsov A., Power of noisy quantum states and the advantage of resource dilution, Physical Review A, ISSN: 2469-9926, Vol.109, pp.022404-022404, 2024100p.
8.  Tulja Varun K., Chandan D., Streltsov A., Real quantum operations and state transformations, NEW JOURNAL OF PHYSICS, ISSN: 1367-2630, DOI: 10.1088/1367-2630/acf9c4, Vol.25, pp.1-14, 2023

Streszczenie:
Resource theory of imaginarity provides a useful framework to understand the role of complex numbers, which are essential in the formulation of quantum mechanics, in a mathematically rigorous way. In the first part of this article, we study the properties of 'real' (quantum) operations both in single-party and bipartite settings. As a consequence, we provide necessary and sufficient conditions for state transformations under real operations and show the existence of 'real entanglement' monotones. In the second part of this article, we focus on the problem of single copy state transformation via real quantum operations. When starting from pure initial states, we completely solve this problem by finding an analytical expression for the optimal fidelity of transformation, for a given probability of transformation and vice versa. Moreover, for state transformations involving arbitrary initial states and pure final states, we provide a semidefinite program to compute the optimal achievable fidelity, for a given probability of transformation.

Słowa kluczowe:
resource theory of imaginarity, real quantum operations, stochastic approximate state conversion

Afiliacje autorów:
Tulja Varun K. - inna afiliacja
Chandan D. - inna afiliacja
Streltsov A. - inna afiliacja
140p.
9.  Francesco A., Mazelanik M., Lipka M., Streltsov A., Parniak M., Demkowicz-Dobrzański R., Quantum Asymmetry and Noisy Multimode Interferometry, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.128.240504, Vol.128, pp.1-6, 2022

Streszczenie:
Quantum asymmetry is a physical resource that coincides with the amount of coherence between the eigenspaces of a generator responsible for phase encoding in interferometric experiments. We highlight an apparently counterintuitive behavior that the asymmetry may increase as a result of a decrease of coherence inside a degenerate subspace. We intuitively explain and illustrate the phenomena by performing a three-mode single-photon interferometric experiment, where one arm carries the signal and two noisy reference arms have fluctuating phases. We show that the source of the observed sensitivity improvement is the reduction of correlations between these fluctuations and comment on the impact of the effect when moving from the single-photon quantum level to the classical regime. Finally, we also establish the analogy of the effect in the case of entanglement resource theory.

Afiliacje autorów:
Francesco A. - inna afiliacja
Mazelanik M. - inna afiliacja
Lipka M. - inna afiliacja
Streltsov A. - IPPT PAN
Parniak M. - inna afiliacja
Demkowicz-Dobrzański R. - inna afiliacja
200p.
10.  Tanjung K., Su-Yong L., Changsuk N., Jaewan K., Streltsov A., Liew Timothy C H., Paterek T., Correlations and energy in mediated dynamics, NEW JOURNAL OF PHYSICS, ISSN: 1367-2630, DOI: 10.1088/1367-2630/aca9ef, Vol.24, pp.1-10, 2022

Streszczenie:
The minimum time required for a quantum system to evolve to a distinguishable state is set by the
quantum speed limit, and consequently influences the change of quantum correlations and other physical properties. Here we study the time required to maximally entangle two principal systems interacting either directly or via a mediating ancillary system, under the same energy constraints. The direct interactions are proved to provide the fastest way to entangle the principal systems, but it turns out that there exist mediated dynamics that are just as fast. We show that this can only happen if the mediator is initially correlated with the principal systems. These correlations can be fully classical and can remain classical during the entangling process. The final message is that correlations save energy: one has to supply extra energy if maximal entanglement across the
principal systems is to be obtained as fast as with an initially correlated mediator

Słowa kluczowe:
quantum speed limit,quantum entanglement,mediated dynamics,correlations and energy

Afiliacje autorów:
Tanjung K. - inna afiliacja
Su-Yong L. - inna afiliacja
Changsuk N. - inna afiliacja
Jaewan K. - inna afiliacja
Streltsov A. - inna afiliacja
Liew Timothy C H. - inna afiliacja
Paterek T. - inna afiliacja
140p.
11.  Miller M., Kang-Da W., Scalici M., Kołodyński J., Guo-Yong X., Chuan-Feng L., Guang-Can G., Streltsov A., Optimally preserving quantum correlations and oherence with eternally non-Markovian dynamics, NEW JOURNAL OF PHYSICS, ISSN: 1367-2630, DOI: 10.1088/1367-2630/ac6820, Vol.24, pp.1-14, 2022

Streszczenie:
We demonstrate, both analytically and experimentally, the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems. For this, we consider a broad class of qubit evolutions, having a decoherence matrix separated from zero for large times. While any such Markovian evolution leads to an exponential loss of correlations, non-Markovianity can help to preserve correlations even in the limit t → ∞. In fact, under general assumptions, eternally non-Markovian evolution naturally emerges as the one that allows for optimal preservation of quantum correlations. For covariant qubit evolutions, we also show that non-Markovianity can be used to preserve quantum coherence at all times, which is an important resource for quantum
metrology. We explicitly demonstrate this effect experimentally with linear optics, by
implementing the optimal non-Markovian quantum evolution.

Słowa kluczowe:
non-Markovianity, open systems, quantum info, qubits

Afiliacje autorów:
Miller M. - inna afiliacja
Kang-Da W. - inna afiliacja
Scalici M. - inna afiliacja
Kołodyński J. - inna afiliacja
Guo-Yong X. - inna afiliacja
Chuan-Feng L. - inna afiliacja
Guang-Can G. - inna afiliacja
Streltsov A. - IPPT PAN
140p.
12.  Kang-Da W., Tulja Varun K., Swapan R., Carlo Maria S., Guo-Yong X., Chuan-Feng L., Guang-Can G., Streltsov A., Operational Resource Theory of Imaginarity, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.126.090401, Vol.126, pp.090401-1-090401-7, 2021

Streszczenie:
Wave-particle duality is one of the basic features of quantum mechanics, giving rise to the use of complex numbers in describing states of quantum systems and their dynamics and interaction. Since the inception of quantum theory, it has been debated whether complex numbers are essential or whether an alternative consistent formulation is possible using real numbers only. Here, we attack this long-standing problem theoretically and experimentally, using the powerful tools of quantum resource theories. We show that, under reasonable assumptions, quantum states are easier to create and manipulate if they only have real elements. This gives an operational meaning to the resource theory of imaginarity. We identify and answer several important questions, which include the state-conversion problem for all qubit states and all pure states of any dimension and the approximate imaginarity distillation for all quantum states. As an application, we show that imaginarity plays a crucial role in state discrimination, that is, there exist real quantum states that can be perfectly distinguished via local operations and classical communication but that cannot be distinguished with any nonzero probability if one of the parties has no access to imaginarity. We confirm this phenomenon experimentally with linear optics, discriminating different two-photon quantum states by local projective measurements. Our results prove that complex numbers are an indispensable part of quantum mechanics.

Afiliacje autorów:
Kang-Da W. - inna afiliacja
Tulja Varun K. - inna afiliacja
Swapan R. - inna afiliacja
Carlo Maria S. - inna afiliacja
Guo-Yong X. - inna afiliacja
Chuan-Feng L. - inna afiliacja
Guang-Can G. - inna afiliacja
Streltsov A. - IPPT PAN
200p.
13.  Tulja Varun K., Chandan D., Streltsov A., Catalytic Transformations of Pure Entangled States, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.127.150503, Vol.127, pp.1-6, 2021

Streszczenie:
Quantum entanglement of pure states is usually quantified via the entanglement entropy, the von Neumann entropy of the reduced state. Entanglement entropy is closely related to entanglement distillation, a process for converting quantum states into singlets, which can then be used for various quantum technological tasks. The relation between entanglement entropy and entanglement distillation has been known only for the asymptotic setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open. Here we close this gap by considering entanglement catalysis. We prove that entanglement entropy completely characterizes state transformations in the presence of entangled catalysts. Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving asymptotic results an operational meaning also in the single-copy setup.

Afiliacje autorów:
Tulja Varun K. - inna afiliacja
Chandan D. - inna afiliacja
Streltsov A. - IPPT PAN
200p.
14.  Kang-Da W., Tulja Varun K., Swapan R., Carlo Maria S., Guo-Yong X., Chuan-Feng L., Guang-Can G., Streltsov A., Resource theory of imaginarity: Quantification and state conversion, Physical Review A, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.103.032401, Vol.103, pp.32401-1-32401-13, 2021

Streszczenie:
Complex numbers are widely used in both classical and quantum physics and are indispensable components for describing quantum systems and their dynamical behavior. Recently, the resource theory of imaginarity has been introduced, allowing for a systematic study of complex numbers in quantum mechanics and quantum information theory. In this work we develop theoretical methods for the resource theory of imaginarity, motivated by recent progress within theories of entanglement and coherence. We investigate imaginarity quantification, focusing on the geometric imaginarity and the robustness of imaginarity, and apply these tools to the state conversion problem in imaginarity theory. Moreover, we analyze the complexity of real and general operations in optical experiments, focusing on the number of unfixed wave plates for their implementation. We also discuss the role of imaginarity for local state discrimination, proving that any pair of real orthogonal pure states can be discriminated via local real operations and classical communication. Our study reveals the significance of complex numbers in quantum physics and proves that imaginarity is a resource in optical experiments.

Afiliacje autorów:
Kang-Da W. - inna afiliacja
Tulja Varun K. - inna afiliacja
Swapan R. - inna afiliacja
Carlo Maria S. - inna afiliacja
Guo-Yong X. - inna afiliacja
Chuan-Feng L. - inna afiliacja
Guang-Can G. - inna afiliacja
Streltsov A. - IPPT PAN
100p.
15.  Kang-Da W., Streltsov A., Regula B., Guo-Yong X., Chuan-Feng L., Guang-Can G., Experimental Progress on Quantum Coherence: Detection, Quantification, and Manipulation, Advanced Quantum Technologies, ISSN: 2511-9044, DOI: 10.1002/qute.202100040, Vol.4, pp.2100040-1-2100040-16, 2021

Streszczenie:
Quantum coherence is a fundamental property of quantum systems, separating quantum from classical physics. Recently, there has been significant interest in the characterization of quantum coherence as a resource, investigating how coherence can be extracted and used for quantum technological applications. In this work, the progress of this research is reviewed, focusing in particular on recent experimental efforts. After a brief review of the underlying theory, the main platforms for realizing the experiments are discussed: linear optics, nuclear magnetic resonance, and
superconducting systems. Experimental detection and quantification of coherence, experimental state conversion and coherence distillation, and experiments investigating the dynamics of quantum coherence are then considered. Experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements are also reviewed. Experimental efforts on multipartite and multilevel coherence are also discussed.

Afiliacje autorów:
Kang-Da W. - inna afiliacja
Streltsov A. - IPPT PAN
Regula B. - inna afiliacja
Guo-Yong X. - inna afiliacja
Chuan-Feng L. - inna afiliacja
Guang-Can G. - inna afiliacja
16.  Streltsov A., Meignant C., Eisert J., Rates of Multipartite Entanglement Transformations, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.125.080502, Vol.125, pp.080502-1 -080502-6, 2020

Streszczenie:
The theory of the asymptotic manipulation of pure bipartite quantum systems can be considered
completely understood: the rates at which bipartite entangled states can be asymptotically transformed into each other are fully determined by a single number each, the respective entanglement entropy. In the multipartite setting, similar questions of the optimally achievable rates of transforming one pure state into another are notoriously open. This seems particularly unfortunate in the light of the revived interest in such questions due to the perspective of experimentally realizing multipartite quantum networks. In this Letter, we report substantial progress by deriving simple upper and lower bounds on the rates that can be achieved in asymptotic multipartite entanglement transformations. These bounds are based on ideas of entanglement
combing and state merging. We identify cases where the bounds coincide and hence provide the exact rates.As an example, we bound rates at which resource states for the cryptographic scheme of quantum secret
sharing can be distilled from arbitrary pure tripartite quantum states. This result provides further scope for quantum internet applications, supplying tools to study the implementation of multipartite protocols over quantum networks.

Afiliacje autorów:
Streltsov A. - inna afiliacja
Meignant C. - inna afiliacja
Eisert J. - inna afiliacja
200p.
17.  Streltsov A., Quantum state merging with bound entanglement, NEW JOURNAL OF PHYSICS, ISSN: 1367-2630, DOI: 10.1088/1367-2630/ab70d7, Vol.22, pp.1-11, 2020

Streszczenie:
Quantum state merging is one of the most important protocols in quantum information theory. In
this task two parties aim to merge their parts of a pure tripartite state by making use of additional
singlets while preserving correlations with a third party. We study a variation of this scenario where
the shared state is not necessarily pure, and the merging parties have free access to local operations, classical communication, and positive partial transpose (PPT) entangled states. We provide general conditions for a state to admit perfect merging, and present a family of fully separable states whichcannot be perfectly merged if the merging parties have no access to additional singlets. We also show that free PPT entangled states do not give any advantage for merging of pure states, and the conditional entropy plays the same role as in standard quantum state merging quantifying the rate of additional singlets needed to perfectly merge the state.

Słowa kluczowe:
quantum entanglement, quantum communication, quantum state merging

Afiliacje autorów:
Streltsov A. - IPPT PAN
140p.
18.  Kang-Da W., Thomas T., Guo-Yong X., Chuan-Feng L., Guang-Can G., Plenio M., Streltsov A., Quantum coherence and state conversion: theory and experiment, NPJ Quantum Information, ISSN: 2056-6387, DOI: 10.1038/s41534-020-0250-z, Vol.6, No.22, pp.1-9, 2020

Streszczenie:
The resource theory of coherence studies the operational value of superpositions in quantum technologies. A key question in this theory concerns the efficiency of manipulation and interconversion of the resource. Here, we solve this question completely for qubit states by determining the optimal probabilities for mixed-state conversions via stochastic incoherent operations. Extending the discussion to distributed scenarios, we introduce and address the task of assisted incoherent state conversion, where the process is enhanced by making use of correlations with a second party. Building on these results, we demonstrate experimentally that the optimal state-conversion probabilities can be achieved in a linear optics setup. This paves the way towards real world applications of coherence transformations in current quantum technologies.

Afiliacje autorów:
Kang-Da W. - inna afiliacja
Thomas T. - inna afiliacja
Guo-Yong X. - inna afiliacja
Chuan-Feng L. - inna afiliacja
Guang-Can G. - inna afiliacja
Plenio M. - inna afiliacja
Streltsov A. - IPPT PAN
19.  Kołodyński J., Swapan R., Streltsov A., Entanglement negativity as a universal non-Markovianity witness, Physical Review A, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.101.020303, Vol.101, pp.020303-1 -020303-5, 2020

Streszczenie:
In order to engineer an open quantum system and its evolution, it is essential to identify and control the memory effects. These are formally attributed to the non-Markovianity of dynamics that manifests itself by the evolution being indivisible in time, a property which can be witnessed by a nonmonotonic behavior of contractive functions or correlation measures. We show that by monitoring directly the entanglement behavior of a system in a tripartite setting it is possible to witness all invertible non-Markovian dynamics, as well as all (also noninvertible) qubit evolutions. This is achieved by using negativity, a computable measure of
entanglement, which in the usual bipartite setting is not a universal non-Markovianity witness. We emphasize further the importance of multipartite states by showing that non-Markovianity cannot be faithfully witnessed by any contractive function of single qubits. We support our statements by an explicit example of eternally non-Markovian qubit dynamics, for which negativity can witness non-Markovianity at arbitrary timescales.

Afiliacje autorów:
Kołodyński J. - inna afiliacja
Swapan R. - inna afiliacja
Streltsov A. - IPPT PAN
20.  Regula B., Ludovico L., Streltsov A., Nonasymptotic assisted distillation of quantum coherence, Physical Review A, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.98.052329, Vol.98, pp.052329-1-052329-8, 2018

Streszczenie:
We characterize the operational task of environment-assisted distillation of quantum coherence under different sets of free operations when only a finite supply of copies of a given state is available. We first evaluate the one-shot assisted distillable coherence exactly, and introduce a semidefinite programming bound on it in terms of a smooth entropic quantity. We prove the bound to be tight for all systems in dimensions 2 and 3, which allows us to obtain computable expressions for the one-shot rate of distillation, establish an analytical expression for the best achievable fidelity of assisted distillation for any finite number of copies, and fully solve the problem of asymptotic zero-error assisted distillation for qubit and qutrit systems. Our characterization shows that all
relevant sets of free operations in the resource theory of coherence have exactly the same power in the task of one-shot assisted coherence distillation, and furthermore resolves a conjecture regarding the additivity of coherence of assistance in dimension 3

Afiliacje autorów:
Regula B. - inna afiliacja
Ludovico L. - inna afiliacja
Streltsov A. - IPPT PAN
21.  Regula B., Marco P., Marco C., Bromley T., Streltsov A., Gerardo A., Converting multilevel nonclassicality into genuine multipartite entanglement, NEW JOURNAL OF PHYSICS, ISSN: 1367-2630, DOI: 10.1088/1367-2630/aaae9d, Vol.20, pp.033012-1-033012-13, 2018

Streszczenie:
Characterizing genuine quantum resources and determining operational rules for their manipulation are crucial steps to appraise possibilities and limitations of quantum technologies. Two such key resources are nonclassicality, manifested as quantum superposition between reference states of a single system, and entanglement, capturing quantum correlations among two or more subsystems. Here we present a general formalism for the conversion of nonclassicality into multipartite entanglement, showing that a faithful reversible transformation between the two resources is always possible within a precise resource-theoretic framework. Specializing to quantum coherence between the levels of a quantum system as an instance of nonclassicality, we introduce explicit protocols for such a mapping. We further show that the conversion relates multilevel coherence and multipartite entanglement not only qualitatively, but also quantitatively, restricting the amount of entanglement
achievable in the process and in particular yielding an equality between the two resources when quantified by fidelity-based geometric measures.

Słowa kluczowe:
resource theories, quantum entanglement, nonclassicality, quantum coherence

Afiliacje autorów:
Regula B. - inna afiliacja
Marco P. - inna afiliacja
Marco C. - inna afiliacja
Bromley T. - inna afiliacja
Streltsov A. - IPPT PAN
Gerardo A. - inna afiliacja
22.  Streltsov A., Hermann K., Sabine W., Manuel G., Dagmar B., Maximal coherence and the resource theory of purity, NEW JOURNAL OF PHYSICS, ISSN: 1367-2630, DOI: 10.1088/1367-2630/aac484, Vol.20, pp.1-14, 2018

Streszczenie:
The resource theory of quantum coherence studies the off-diagonal elements of a density matrix in a
distinguished basis, whereas the resource theory of purity studies all deviations from the maximally
mixed state. We establish a direct connection between the two resource theories, by identifying purity as the maximal coherence which is achievable by unitary operations. The states that saturate this
maximum identify a universal family of maximally coherent mixed states. These states are optimal
resources under maximally incoherent operations, and thus independent of the way coherence is quantified. For all distance-based coherence quantifiers the maximal coherence can be evaluated exactly, and is shown to coincide with the corresponding distance-based purity quantifier. We further show that purity bounds the maximal amount of entanglement and discord that can be generated by unitary operations, thus demonstrating that purity is the most elementary resource for quantum information processing.

Słowa kluczowe:
quantum coherence, quantum entanglement, esource theories

Afiliacje autorów:
Streltsov A. - IPPT PAN
Hermann K. - inna afiliacja
Sabine W. - inna afiliacja
Manuel G. - inna afiliacja
Dagmar B. - inna afiliacja
23.  Streltsov A., Swapan R., Boes P., Jens E., Structure of the Resource Theory of Quantum Coherence, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.119.140402, Vol.119, pp.1-6, 2017

Streszczenie:
Quantum coherence is an essential feature of quantum mechanics which is responsible for the departure
between the classical and quantum world. The recently established resource theory of quantum coherence
studies possible quantum technological applications of quantum coherence, and limitations that arise if one
is lacking the ability to establish superpositions. An important open problem in this context is a simple
characterization for incoherent operations, constituted by all possible transformations allowed within the
resource theory of coherence. In this Letter, we contribute to such a characterization by proving several upper bounds on the maximum number of incoherent Kraus operators in a general incoherent operation. For a single qubit, we show that the number of incoherent Kraus operators is not more than 5, and it remains an open question if this number can be reduced to 4. The presented results are also relevant for quantum thermodynamics, as we demonstrate by introducing the class of Gibbs-preserving strictly incoherent operations, and solving the corresponding mixed-state conversion problem for a single qubit.

Afiliacje autorów:
Streltsov A. - IPPT PAN
Swapan R. - inna afiliacja
Boes P. - inna afiliacja
Jens E. - inna afiliacja
45p.
24.  de Vicente Julio I., Streltsov A., Genuine quantum coherence, JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, ISSN: 1751-8113, DOI: 10.1088/1751-8121/50/4/045301, Vol.50, pp.1-34, 2017

Streszczenie:
Any quantum resource theory is based on free states and free operations, i.e. states and operations which can be created and performed at no cost. In the resource theory of coherence free states are diagonal in some fixed basis, and free operations are those which cannot create coherence for some particular experimental realization. Recently, some problems of this approach have been discussed, and new sets of operations have been proposed to resolve these problems. We propose here the framework of genuine quantum coherence. This approach is based on a simple principle: we demand that a genuinely incoherent operation preserves all incoherent states. This framework captures coherence under additional constrains such as energy preservation and all genuinely incoherent operations are incoherent regardless of their particular experimental realization. We also introduce the full class of operations with this property, which we call fully incoherent. We analyze in detail the mathematical structure of these classes and also study possible state transformations. We show that deterministic manipulation is severely limited, even in the asymptotic settings. In particular, this framework does not have a unique golden unit, i.e. there is no single state from which all other states can be created deterministically with the free operations. This suggests that any reasonably powerful resource theory of coherence must contain free operations which can potentially create coherence in some experimental
realization.

Afiliacje autorów:
de Vicente Julio I. - inna afiliacja
Streltsov A. - IPPT PAN
25.  Streltsov A., Swapan R., Manabendra Nath B., Lewenstein M., Towards Resource Theory of Coherence in Distributed Scenarios, PHYSICAL REVIEW X, ISSN: 2160-3308, DOI: 10.1103/PhysRevX.7.011024, Vol.7, pp.011024-1-011024-13, 2017

Streszczenie:
The search for a simple description of fundamental physical processes is an important part of quantum
theory. One example for such an abstraction can be found in the distance lab paradigm: if two separated
parties are connected via a classical channel, it is notoriously difficult to characterize all possible operations these parties can perform. This class of operations is widely known as local operations and classical communication. Surprisingly, the situation becomes comparably simple if the more general class of
separable operations is considered, a finding that has been extensively used in quantum information theory
for many years. Here, we propose a related approach for the resource theory of quantum coherence, where
two distant parties can perform only measurements that do not create coherence and can communicate their outcomes via a classical channel. We call this class local incoherent operations and classical communication. While the characterization of this class is also difficult in general, we show that the larger
class of separable incoherent operations has a simple mathematical form, yet still preserves the main
features of local incoherent operations and classical communication. We demonstrate the relevance of our
approach by applying it to three different tasks: assisted coherence distillation, quantum teleportation, and single-shot quantum state merging. We expect that the results we obtain in this work also transfer to other concepts of coherence that are discussed in recent literature. The approach we present here opens new ways to study the resource theory of coherence in distributed scenarios.

Afiliacje autorów:
Streltsov A. - IPPT PAN
Swapan R. - inna afiliacja
Manabendra Nath B. - inna afiliacja
Lewenstein M. - inna afiliacja
26.  Streltsov A., Gerardo A., Plenio M., Colloquium: Quantum coherence as a resource, Reviews of Modern Physics, ISSN: 0034-6861, DOI: 10.1103/RevModPhys.89.041003, Vol.89, pp.041003-1 -041003-34, 2017

Streszczenie:
The coherent superposition of states, in combination with the quantization of observables, represents one of the most fundamental features that mark the departure of quantum mechanics from the classical realm. Quantum coherence in many-body systems embodies the essence of entanglement and is an essential ingredient for a plethora of physical phenomena in quantum optics, quantum information, solid state physics, and nanoscale thermodynamics. In recent years, research on the presence and functional role of quantum coherence in biological systems has also attracted considerable interest. Despite the fundamental importance of quantum coherence, the development of a rigorous theory of quantum coherence as a physical resource has been initiated only recently. This Colloquium discusses and reviews the development of this rapidly growing research field that encompasses the characterization, quantification, manipulation, dynamical evolution, and operational application of quantum coherence.

Afiliacje autorów:
Streltsov A. - IPPT PAN
Gerardo A. - inna afiliacja
Plenio M. - inna afiliacja
27.  Chitambar E., Streltsov A., Swapan R., Bera M., Gerardo A., Lewenstein M., Assisted Distillation of Quantum Coherence, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.116.070402, Vol.116, pp.070402-1-070402-5, 2016

Streszczenie:
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed

Afiliacje autorów:
Chitambar E. - inna afiliacja
Streltsov A. - IPPT PAN
Swapan R. - inna afiliacja
Bera M. - inna afiliacja
Gerardo A. - inna afiliacja
Lewenstein M. - inna afiliacja
28.  Streltsov A., Chitambar E., Swapan R., Bera M., Winter A., Lewenstein M., Entanglement and coherence in quantum state merging, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.116.240405, Vol.116, pp.1-6, 2016

Streszczenie:
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

Afiliacje autorów:
Streltsov A. - IPPT PAN
Chitambar E. - inna afiliacja
Swapan R. - inna afiliacja
Bera M. - inna afiliacja
Winter A. - inna afiliacja
Lewenstein M. - inna afiliacja
29.  Streltsov A., Soojoon L., Gerardo A., Concentrating Tripartite Quantum Information, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.115.030505, Vol.115, pp.030505-1-030505-5, 2015

Streszczenie:
We introduce the concentrated information of tripartite quantum states. For three parties Alice, Bob, and
Charlie, it is defined as the maximal mutual information achievable between Alice and Charlie via local operations and classical communication performed by Charlie and Bob. We derive upper and lower bounds
to the concentrated information, and obtain a closed expression for it on several classes of states including arbitrary pure tripartite states in the asymptotic setting. We show that distillable entanglement, entanglement of assistance, and quantum discord can all be expressed in terms of the concentrated information, thus revealing its role as a unifying informational primitive. We finally investigate quantum state merging of mixed states with and without additional entanglement. The gap between classical and quantum concentrated information is proven to be an operational figure of merit for mixed state merging in the absence of additional entanglement. Contrary to the pure state merging, our analysis shows that classical communication in both directions can provide an advantage for merging of mixed states

Afiliacje autorów:
Streltsov A. - IPPT PAN
Soojoon L. - inna afiliacja
Gerardo A. - inna afiliacja

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024